Do you want to publish a course? Click here

Learning with Collaborative Neural Network Group by Reflection

74   0   0.0 ( 0 )
 Added by Zehua Cheng
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

For the present engineering of neural systems, the preparing of extensive scale learning undertakings generally not just requires a huge neural system with a mind boggling preparing process yet additionally troublesome discover a clarification for genuine applications. In this paper, we might want to present the Collaborative Neural Network Group (CNNG). CNNG is a progression of neural systems that work cooperatively to deal with various errands independently in a similar learning framework. It is advanced from a solitary neural system by reflection. Along these lines, in light of various circumstances removed by the calculation, the CNNG can perform diverse techniques when handling the information. The examples of chose methodology can be seen by human to make profound adapting more reasonable. In our execution, the CNNG is joined by a few moderately little neural systems. We give a progression of examinations to assess the execution of CNNG contrasted with other learning strategies. The CNNG is able to get a higher accuracy with a much lower training cost. We can reduce the error rate by 74.5% and reached the accuracy of 99.45% in MNIST with three feedforward networks (4 layers) in one training epoch.



rate research

Read More

Collaborative learning has successfully applied knowledge transfer to guide a pool of small student networks towards robust local minima. However, previous approaches typically struggle with drastically aggravated student homogenization when the number of students rises. In this paper, we propose Collaborative Group Learning, an efficient framework that aims to diversify the feature representation and conduct an effective regularization. Intuitively, similar to the human group study mechanism, we induce students to learn and exchange different parts of course knowledge as collaborative groups. First, each student is established by randomly routing on a modular neural network, which facilitates flexible knowledge communication between students due to random levels of representation sharing and branching. Second, to resist the student homogenization, students first compose diverse feature sets by exploiting the inductive bias from sub-sets of training data, and then aggregate and distill different complementary knowledge by imitating a random sub-group of students at each time step. Overall, the above mechanisms are beneficial for maximizing the student population to further improve the model generalization without sacrificing computational efficiency. Empirical evaluations on both image and text tasks indicate that our method significantly outperforms various state-of-the-art collaborative approaches whilst enhancing computational efficiency.
The predictive learning of spatiotemporal sequences aims to generate future images by learning from the historical context, where the visual dynamics are believed to have modular structures that can be learned with compositional subsystems. This paper models these structures by presenting PredRNN, a new recurrent network, in which a pair of memory cells are explicitly decoupled, operate in nearly independent transition manners, and finally form unified representations of the complex environment. Concretely, besides the original memory cell of LSTM, this network is featured by a zigzag memory flow that propagates in both bottom-up and top-down directions across all layers, enabling the learned visual dynamics at different levels of RNNs to communicate. It also leverages a memory decoupling loss to keep the memory cells from learning redundant features. We further propose a new curriculum learning strategy to force PredRNN to learn long-term dynamics from context frames, which can be generalized to most sequence-to-sequence models. We provide detailed ablation studies to verify the effectiveness of each component. Our approach is shown to obtain highly competitive results on five datasets for both action-free and action-conditioned predictive learning scenarios.
We present PrecisionBatching, a quantized inference algorithm for speeding up neural network execution on traditional hardware platforms at low bitwidths without the need for retraining or recalibration. PrecisionBatching decomposes a neural network into individual bitlayers and accumulates them using fast 1-bit operations while maintaining activations in full precision. PrecisionBatching not only facilitates quantized inference at low bitwidths (< 8 bits) without the need for retraining/recalibration, but also 1) enables traditional hardware platforms the ability to realize inference speedups at a finer granularity of quantization (e.g: 1-16 bit execution) and 2) allows accuracy and speedup tradeoffs at runtime by exposing the number of bitlayers to accumulate as a tunable parameter. Across a variety of applications (MNIST, language modeling, natural language inference) and neural network architectures (fully connected, RNN, LSTM), PrecisionBatching yields end-to-end speedups of over 8x on a GPU within a < 1% error margin of the full precision baseline, outperforming traditional 8-bit quantized inference by over 1.5x-2x at the same error tolerance.
128 - Kele Xu , Haibo Mi , Dawei Feng 2018
Valuable training data is often owned by independent organizations and located in multiple data centers. Most deep learning approaches require to centralize the multi-datacenter data for performance purpose. In practice, however, it is often infeasible to transfer all data to a centralized data center due to not only bandwidth limitation but also the constraints of privacy regulations. Model averaging is a conventional choice for data parallelized training, but its ineffectiveness is claimed by previous studies as deep neural networks are often non-convex. In this paper, we argue that model averaging can be effective in the decentralized environment by using two strategies, namely, the cyclical learning rate and the increased number of epochs for local model training. With the two strategies, we show that model averaging can provide competitive performance in the decentralized mode compared to the data-centralized one. In a practical environment with multiple data centers, we conduct extensive experiments using state-of-the-art deep network architectures on different types of data. Results demonstrate the effectiveness and robustness of the proposed method.
Research has shown that deep neural networks contain significant redundancy, and thus that high classification accuracy can be achieved even when weights and activations are quantized down to binary values. Network binarization on FPGAs greatly increases area efficiency by replacing resource-hungry multipliers with lightweight XNOR gates. However, an FPGAs fundamental building block, the K-LUT, is capable of implementing far more than an XNOR: it can perform any K-input Boolean operation. Inspired by this observation, we propose LUTNet, an end-to-end hardware-software framework for the construction of area-efficient FPGA-based neural network accelerators using the native LUTs as inference operators. We describe the realization of both unrolled and tiled LUTNet architectures, with the latter facilitating smaller, less power-hungry deployment over the former while sacrificing area and energy efficiency along with throughput. For both varieties, we demonstrate that the exploitation of LUT flexibility allows for far heavier pruning than possible in prior works, resulting in significant area savings while achieving comparable accuracy. Against the state-of-the-art binarized neural network implementation, we achieve up to twice the area efficiency for several standard network models when inferencing popular datasets. We also demonstrate that even greater energy efficiency improvements are obtainable.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا