We analyse the most general connection allowed by Einstein-Hilbert theory in Palatini formalism. We also consider a matter lagrangian independent of the affine connection. We show that any solution of the equation of the connection is essentially Levi-Civita up to a term that contains an undetermined 1-form. Finally, it is proved that these connections and Levi-Civita describe a completely equivalent physics.
We study the most general solution for affine connections that are compatible with the variational principle in the Palatini formalism for the Einstein-Hilbert action (with possible minimally coupled matter terms). We find that there is a family of solutions generalising the Levi-Civita connection, characterised by an arbitrary, non-dynamical vector field ${cal A}_mu$. We discuss the mathematical properties and the physical implications of this family and argue that, although there is a clear mathematical difference between these new Palatini connections and the Levi-Civita one, both unparametrised geodesics and the Einstein equation are shared by all of them. Moreover, the Palatini connections are characterised precisely by these two properties, as well as by other properties of its parallel transport. Based on this, we conclude that physical effects associated to the choice of one or the other will not be distinguishable, at least not at the level of solutions or test particle dynamics. We propose a geometrical interpretation for the existence and unobservability of the new solutions.
We investigate the efficiency of screening mechanisms in the hybrid metric-Palatini gravity. The value of the field is computed around spherical bodies embedded in a background of constant density. We find a thin shell condition for the field depending on the background field value. In order to quantify how the thin shell effect is relevant, we analyze how it behaves in the neighborhood of different astrophysical objects (planets, moons or stars). We find that the condition is very well satisfied except only for some peculiar objects. Furthermore we establish bounds on the model using data from solar system experiments such as the spectral deviation measured by the Cassini mission and the stability of the Earth-Moon system, which gives the best constraint to date on $f(R)$ theories. These bounds contribute to fix the range of viable hybrid gravity models.
We analyse configurations of compact stars in the so-called R-squared gravity in the Palatini formalism. Using a realistic equation of state we show that the mass-radius configurations are lighter than their counterparts in General Relativity. We also obtain the internal profiles, which run in strong correlation with the derivatives of the equation of state, leading to regions where the mass parameter decreases with the radial coordinate in a counter-intuitive way. In order to analyse such correlation, we introduce a parametrisation of the equation of state given by multiple polytropes, which allows us to explicitly control its derivatives. We show that, even in a limiting case where hard phase transitions in matter are allowed, the internal profile of the mass parameter still presents strange features and the calculated M-R configurations also yield NSs lighter than those obtained in General Relativity.
We consider static and cylindrically symmetric interior string type solutions in the scalar-tensor representation of the hybrid metric-Palatini modified theory of gravity. As a first step in our study, we obtain the gravitational field equations and further simplify the analysis by imposing Lorentz invariance along the $t$ and $z$ axes, which reduces the number of unknown metric tensor components to a single function $W^2(r)$. In this case, the general solution of the field equations can be obtained, for an arbitrary form of the scalar field potential, in an exact closed parametric form, with the scalar field $phi$ taken as a parameter. We consider in detail several exact solutions of the field equations, corresponding to a null and constant potential, and to a power-law potential of the form $V(phi)=V_0phi ^{3/4}$, in which the behaviors of the scalar field, of the metric tensor components and of the string tension can be described in a simple mathematical form. We also investigate the string models with exponential and Higgs type scalar field potentials by using numerical methods. In this way we obtain a large class of novel stable string-like solutions in the context of hybrid metric-Palatini gravity, in which the basic parameters, such as the scalar field, metric tensor components, and string tension, depend essentially on the initial values of the scalar field, and of its derivative, on the $r=0$ circular axis.
We study new FRW type cosmological models of modified gravity treated on the background of Palatini approach. These models are generalization of Einstein gravity by the presence of a scalar field non-minimally coupled to the curvature. The models employ Starobinskys term in the Lagrangian and dust matter. Therefore, as a by-product, an exhausted cosmological analysis of general relativity amended by quadratic term is presented. We investigate dynamics of our models, confront them with the currently available astrophysical data as well as against LCDM model. We have used the dynamical system methods in order to investigate dynamics of the models. It reveals the presence of a final sudden singularity. Fitting free parameters we have demonstrated by statistical analysis that this class of models is in a very good agreement with the data (including CMB measurements) as well as with the standard LCDM model predictions. One has to use statefinder diagnostic in order to discriminate among them. Therefore Bayesian methods of model selection have been employed in order to indicate preferred model. Only in the light of CMB data the concordance model remains invincible.