Herein, we performed ab initio screening to identify the best doping of LiNiO2 to achieve improved cycle performance in lithium ion batteries. The interlayer interaction that dominates the c-axis contraction and overall performance was captured well by density functional theory using van der Waals exchange-correlation functionals. The screening indicated that Nb-doping is promising for improving cycle performance. To extract qualitative reasonings, we performed data analysis in a materials informatics manner to obtain a reasonable regression to reproduce the obtained results. LASSO analysis implied that the charge density between the layers in the discharged state is the dominant factor influencing cycle performance.