Multi-Perspective Fusion Network for Commonsense Reading Comprehension


Abstract in English

Commonsense Reading Comprehension (CRC) is a significantly challenging task, aiming at choosing the right answer for the question referring to a narrative passage, which may require commonsense knowledge inference. Most of the existing approaches only fuse the interaction information of choice, passage, and question in a simple combination manner from a emph{union} perspective, which lacks the comparison information on a deeper level. Instead, we propose a Multi-Perspective Fusion Network (MPFN), extending the single fusion method with multiple perspectives by introducing the emph{difference} and emph{similarity} fusiondeleted{along with the emph{union}}. More comprehensive and accurate information can be captured through the three types of fusion. We design several groups of experiments on MCScript dataset cite{Ostermann:LREC18:MCScript} to evaluate the effectiveness of the three types of fusion respectively. From the experimental results, we can conclude that the difference fusion is comparable with union fusion, and the similarity fusion needs to be activated by the union fusion. The experimental result also shows that our MPFN model achieves the state-of-the-art with an accuracy of 83.52% on the official test set.

Download