Do you want to publish a course? Click here

Multiplexing Capabilities of Cold-Neutron Triple-Axis Spectrometer SIKA

116   0   0.0 ( 0 )
 Added by Guochu Deng
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

SIKA, a high-flux cold-neutron triple-axis spectrometer at the OPAL reactor at the Australian Nuclear Science and Technology Organization, is equipped with a 13-blade analyser and position-sensitive detector. This multiplexing design endows SIKA high flexibility to run in both traditional triple-axis and multiplexing analyser modes. In this study, two different multiplexing modes on SIKA are simulated using Monte-Carlo ray-tracing methods. The simulation results demonstrate SIKA capabilities to work in these operational modes, especially, the multi-Q const-Ef mode. This capability was demonstrated by measuring the phonon dispersion of a Pb single-crystal sample with the multi-Q const-Ef mode on SIKA. Compared to the traditional and multi-analyser triple-axis spectrometers, multiplexing modes on SIKA combine the advantages of the high data-acquisition efficiency and flexibility to focus on local areas of interest in the (Q, w) space.



rate research

Read More

The upgrade of the cold neutron triple-axis spectrometer FLEXX is described. We discuss the characterisation of the gains from the new primary spectrometer, including a larger guide and double focussing monochromator, and present measurements of the energy and momentum resolution and of the neutron flux of the instrument. We found an order of magnitude gain in intensity (at the cost of coarser momentum resolution), and that the incoherent elastic energy widths are measurably narrower than before the upgrade. The much improved count rate should allow the use of smaller single crystals samples and thus enable the upgraded FLEXX spectrometer to continue making leading edge measurements.
The cold neutron multiplexing secondary spectrometer CAMEA (Continuous Angle Multiple Energy Analysis) was commissioned at the Swiss spallation neutron source SINQ at the Paul Scherrer Institut at the end of 2018. The spectrometer is optimised for an efficient data collection in the horizontal scattering plane, allowing for detailed and rapid mapping of excitations under extreme conditions. The novel design consists of consecutive, upward scattering analyzer arcs underneath an array of position sensitive detectors mounted inside a low permeability stainless-steel vacuum vessel. The construction of the worlds first continuous angle multiple energy analysis instrument required novel solutions to many technical challenges, including analyzer mounting, vacuum connectors, and instrument movement. These were solved by extensive prototype experiments and in-house developments. Here we present a technical overview of the spectrometer describing in detail the engineering solutions and present our first experimental data taken during the commissioning. Our results demonstrate the tremendous gains in data collection rate for this novel type of spectrometer design.
The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual user experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. Experiments are being routinely performed with the sample at extreme conditions: T~0.05K, p>=2GPa and B=8T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail.
190 - M. Osipenko , M. Ripani , G. Ricco 2015
In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$times 10^{-4}$ to 3.5$times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.
A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا