Purpose: This study aimed to investigate the actual changes of central corneal thickness (CCT) in keratoconus and normal corneas during air puff indentation, by using corneal visualization Scheimpflug technology (Corvis ST). Methods: A total of 32 keratoconic eyes and 46 normal eyes were included in this study. Three parameters of CCTinitial, CCTfinal and CCTpeak were selected to represent the CCT at initial time, final time and highest corneal concavity, respectively, during air puff indentation. Wilcoxon signed rank test (paired sample test) was used to assess the differences between these 3 parameters in both keratoconus and normal groups. Univariate linear regression analysis was performed to determine the effect of CCTinitial on CCTpeak and CCTfinal, as well as the impact of air puff force on CCT in each group. Receiver operating characteristic (ROC) curves were constructed to evaluate the discriminative ability of the 3 parameters. Results: The results demonstrated that CCTpeak and CCTfinal were significantly decreased (p<0.01) compared to CCTinitial in both keratoconus and normal groups. Regression analysis indicated a significant positive correlation between CCTpeak and CCTinitial in normal cornea group (R2=0.337, p<0.01), but not in keratoconus group (R2=0.029, p=0.187). Likewise, regression models of air puff force and CCT revealed the different patterns of CCT changes between keratoconus and normal cornea groups. Furthermore, ROC curves showed that CCTpeak exhibited the greatest AUC (area under ROC curve) of 0.940, with accuracy, sensitivity and specificity of 94.9%, 87.5% and 100%, respectively. Conclusions: CCT may change during air puff indentation, and is significantly different between keratoconus and normal cornea groups. The changing pattern is useful for the diagnosis of keratoconus, and lays the foundation for corneal biomechanics.