Directed momentum current induced by the PT-symmetric driving


Abstract in English

We investigate the directed momentum current in the quantum kicked rotor model with $mathcal{PT}$ symmetric deriving potential. For the quantum non-resonance case, the values of quasi-energy become to be complex when the strength of imaginary part of the kicking potential exceeds textbf{a} threshold value, which demonstrates the appearance of the spontaneous $mathcal{PT}$ symmetry breaking. In the vicinity of the phase-transition point, the momentum current exhibits a staircase growth with time. Each platform of the momentum current corresponds to the mean momentum of some eigenstates of the Floquet operator whose imaginary parts of the quasi-energy are significantly large. Above the phase-transition point, the momentum current increases linearly with time. Interestingly, its acceleration rate exhibits a kind of quantized increment with the kicking strength. We propose a modified classical acceleration mode of the kicked rotor model to explain such an intriguing phenomenon. Our theoretical prediction is in good agreement with numerical results.

Download