Do you want to publish a course? Click here

Non-uniform Curvature and Anisotropic Deformation Control Wrinkling Patterns on Tori

214   0   0.0 ( 0 )
 Added by Teng Zhang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate wrinkling patterns in a tri-layer torus consisting of an expanding thin outer layer, an intermediate soft layer and an inner core with a tunable shear modulus, inspired by pattern formation in developmental biologies, such as follicle pattern formation during the development of chicken embryos. We show from large-scale finite element simulations that hexagonal wrinkling patterns form for stiff cores whereas stripe wrinkling patterns develop for soft cores. Hexagons and stripes co-exist to form hybrid patterns for cores with intermediate stiffness. The governing mechanism for the pattern transition is that the stiffness of the inner core controls the degree to which the major radius of the torus expands this has a greater effect on deformation in the long direction as compared to the short direction of the torus. This anisotropic deformation alters stress states in the outer layer which change from biaxial (preferred hexagons) to uniaxial (preferred stripes) compression as the core stiffness is reduced. As the outer layer continues to expand, stripe and hexagon patterns will evolve into Zigzag and segmented labyrinth, respectively. Stripe wrinkles are observed to initiate at the inner surface of the torus while hexagon wrinkles start from the outer surface as a result of curvature-dependent stresses in the torus. We further discuss the effects of elasticities and geometries of the torus on the wrinkling patterns.

rate research

Read More

We investigate the influence of curvature and topology on crystalline wrinkling patterns in generic elastic bilayers. Our numerical analysis predicts that the total number of defects created by adiabatic compression exhibits universal quadratic scaling for spherical, ellipsoidal and toroidal surfaces over a wide range of system sizes. However, both the localization of individual defects and the orientation of defect chains depend strongly on the local Gaussian curvature and its gradients across a surface. Our results imply that curvature and topology can be utilized to pattern defects in elastic materials, thus promising improved control over hierarchical bending, buckling or folding processes. Generally, this study suggests that bilayer systems provide an inexpensive yet valuable experimental test-bed for exploring the effects of geometrically induced forces on assemblies of topological charges.
Morphogenetic dynamics of tissue sheets require coordinated cell shape changes regulated by global patterning of mechanical forces. Inspired by such biological phenomena, we propose a minimal mechanochemical model based on the notion that cell shape changes are induced by diffusible biomolecules that influence tissue contractility in a concentration-dependent manner -- and whose concentration is in turn affected by the macroscopic tissue shape. We perform computational simulations of thin shell elastic dynamics to reveal propagating chemical and three-dimensional deformation patterns arising due to a sequence of buckling instabilities. Depending on the concentration threshold that actuates cell shape change, we find qualitatively different patterns. The mechanochemically coupled patterning dynamics are distinct from those driven by purely mechanical or purely chemical factors. Using numerical simulations and theoretical arguments, we analyze the elastic instabilities that result from our model and provide simple scaling laws to identify wrinkling morphologies.
195 - Beno^it Kloeckner 2017
We establish new obstruction results to the existence of Riemannian metrics on tori satisfying mixed bounds on both their sectional and Ricci curvatures. More precisely, from Lohkamps theorem, every torus of dimension at least three admits Riemannian metrics with negative Ricci curvature. We show that the sectional curvature of these metrics cannot be bounded from above by an arbitrarily small positive constant. In particular, if the Ricci curvature of a Riemannian torus is negative, bounded away from zero, then there exist some planar directions in this torus where the sectional curvature is positive, bounded away from zero. All constants are explicit and depend only on the dimension of the torus.
We discuss shape profiles emerging in inhomogeneous growth of squeezed tissues. Two approaches are used simultaneously: i) conformal embedding of two-dimensional domain with hyperbolic metrics into the plane, and ii) a pure energetic consideration based on the minimization of the total energy functional. In the latter case the non-uniformly pre-stressed plate, which models the inhomogeneous two-dimensional growth, is analyzed in linear regime under small stochastic perturbations. It is explicitly demonstrated that both approaches give consistent results for buckling profiles and reveal self-similar behavior. We speculate that fractal-like organization of growing squeezed structure has a far-reaching impact on understanding cell proliferation in various biological tissues.
The kinematic flow pattern in slow deformation of a model dense granular medium is studied at high resolution using emph{in situ} imaging, coupled with particle tracking. The deformation configuration is indentation by a flat punch under macroscopic plane-strain conditions. Using a general analysis method, velocity gradients and deformation fields are obtained from the disordered grain arrangement, enabling flow characteristics to be quantified. The key observations are the formation of a stagnation zone, as in dilute granular flow past obstacles; occurrence of vortices in the flow immediately underneath the punch; and formation of distinct shear bands adjoining the stagnation zone. The transient and steady state stagnation zone geometry, as well as the strength of the vortices and strain rates in the shear bands, are obtained from the experimental data. All of these results are well-reproduced in exact-scale Non-Smooth Contact Dynamics (NSCD) simulations. Full 3D numerical particle positions from the simulations allow extraction of flow features that are extremely difficult to obtain from experiments. Three examples of these, namely material free surface evolution, deformation of a grain column below the punch and resolution of velocities inside the primary shear band, are highlighted. The variety of flow features observed in this model problem also illustrates the difficulty involved in formulating a complete micromechanical analytical description of the deformation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا