Liquid tin droplet fragmentation by ultra-short laser pulse


Abstract in English

The fragmentation of a liquid metal droplet induced by a nanosecond laser pulse has been studied well. However, the fragmentation mechanism may be different, when a subpicosecond laser pulse is applied. To discover the details of the fragmentation process, we perform a hydrodynamic simulation of a liquid tin droplet irradiated by a femtosecond laser pulse. We have found that the pressure pulse induced by an instantaneous temperature growth in the skin layer propagates from the one side of the surface of a spherical droplet and focuses in its center; at the release a big cavity is formed at the center of a droplet; the pressure wave release at the backside surface may cause the spallation.

Download