Do you want to publish a course? Click here

Interventionist Counterfactuals on Causal Teams

86   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We introduce an extension of team semantics which provides a framework for the logic of manipulationist theories of causation based on structural equation models, such as Woodwards and Pearls; our causal teams incorporate (partial or total) information about functional dependencies that are invariant under interventions. We give a unified treatment of observational and causal aspects of causal models by isolating two operators on causal teams which correspond, respectively, to conditioning and to interventionist counterfactual implication. We then introduce formal languages for deterministic and probabilistic causal discourse, and show how various notions of cause (e.g. direct and total causes) may be defined in them. Through the tuning of various constraints on structural equations (recursivity, existence and uniqueness of solutions, full or partial definition of the functions), our framework can capture different causal models. We give an overview of the inferential aspects of the recursive, fully defined case; and we dedicate some attention to the recursive, partially defined case, which involves a shift of attention towards nonclassical truth values.



rate research

Read More

We study the logic obtained by endowing the language of first-order arithmetic with second-order measure quantifiers. This new kind of quantification allows us to express that the argument formula is true in a certain portion of all possible interpretations of the quantified variable. We show that first-order arithmetic with measure quantifiers is capable of formalizing simple results from probability theory and, most importantly, of representing every recursive random function. Moreover, we introduce a realizability interpretation of this logic in which programs have access to an oracle from the Cantor space.
169 - Olivier Finkel 2008
We consider the set of infinite real traces, over a dependence alphabet (Gamma, D) with no isolated letter, equipped with the topology induced by the prefix metric. We then prove that all rational languages of infinite real traces are analytic sets and that there exist some rational languages of infinite real traces which are analytic but non Borel sets, and even Sigma^1_1-complete, hence of maximum possible topological complexity.
We consider approaches for causal semantics of Petri nets, explicitly representing dependencies between transition occurrences. For one-safe nets or condition/event-systems, the notion of process as defined by Carl Adam Petri provides a notion of a run of a system where causal dependencies are reflected in terms of a partial order. A well-known problem is how to generalise this notion for nets where places may carry several tokens. Goltz and Reisig have defined such a generalisation by distinguishing tokens according to their causal history. However, this so-called individual token interpretation is often considered too detailed. A number of approaches have tackled the problem of defining a more abstract notion of process, thereby obtaining a so-called collective token interpretation. Here we give a short overview on these attempts and then identify a subclass of Petri nets, called structural conflict nets, where the interplay between conflict and concurrency due to token multiplicity does not occur. For this subclass, we define abstract processes as equivalence classes of Goltz-Reisig processes. We justify this approach by showing that we obtain exactly one maximal abstract process if and only if the underlying net is conflict-free with respect to a canonical notion of conflict.
458 - Anupam Das 2015
We consider the proof complexity of the minimal complete fragment, KS, of standard deep inference systems for propositional logic. To examine the size of proofs we employ atomic flows, diagrams that trace structural changes through a proof but ignore logical information. As results we obtain a polynomial simulation
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا