Decoupling the effects of composition and strain on the vibrational modes of GeSn


Abstract in English

We report on the behavior of Ge-Ge, Ge-Sn, Sn-Sn like and disorder-activated vibrational modes in GeSn semiconductors investigated using Raman scattering spectroscopy. By using an excitation wavelength close to E1 gap, all modes are clearly resolved and their evolution as a function of strain and Sn content is established. In order to decouple the individual contribution of content and strain, the analysis was conducted on series of pseudomorphic and relaxed epitaxial layers with a Sn content in the 5-17at.% range. All vibrational modes were found to display the same qualitative behavior as a function of content and strain, viz. a linear downshift as the Sn content increases or the compressive strain relaxes. Simultaneously, Ge-Sn and Ge-Ge peaks broaden, and the latter becomes increasingly asymmetric. This asymmetry, coupled with the peak position, is exploited in an empirical method to accurately quantify the Sn composition and lattice strain from Raman spectra.

Download