Enhancement of crossed Andreev reflection in a Kitaev ladder connected to normal metal leads


Abstract in English

We study nonlocal transport in a two-leg Kitaev ladder connected to two normal metals. The coupling between the two legs of the ladder when the legs are maintained at a (large) superconducting phase difference, results in the creation of subgap Andreev states. These states in turn are responsible for the enhancement of crossed Andreev reflection. We find that tuning the different parameters of the system suitably leads to enhancement of crossed Andreev reflection signalled by transconductance acquiring the most negative value possible. Furthermore, subgap states cause oscillations of the transconductance as a function of various system parameters such as chemical potential and ladder length, which are seen to be a consequence of Fabry-Perot resonance.

Download