Do you want to publish a course? Click here

Ellipticity dependence transition induced by dynamical Bloch oscillations

97   0   0.0 ( 0 )
 Added by Xiao Zhang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dependence of high-harmonic generation (HHG) on laser ellipticity is investigated using a modified ZnO model. In the driving of relatively weak field, we reproduce qualitatively the ellipticity dependence as observed in the HHG experiment of wurtzite ZnO. When increasing the field strength, the HHG shows an anomalous ellipticity dependence, similar to that observed experimentally in the single-crystal MgO. With the help of a semiclassical analysis, it is found that the key mechanism inducing the change of ellipticity dependence is the interplay between the dynamical Bloch oscillation and the anisotropic band structure. The dynamical Bloch oscillation contributes additional quantum paths, which are less sensitive to ellipticity. The anisotropic band-structure make the driving pulse with finite ellipticity be able to drive the pairs to the band positions with larger gap, which extends the harmonic cutoff. The combination of these two effects leads to the anomalous ellipticity dependence. The result reveals the importance of dynamical Bloch oscillations for the ellipticity dependence of HHG from bulk ZnO.



rate research

Read More

Ultrafast charge transport in strongly biased semiconductors is at the heart of highspeed electronics, electro-optics, and fundamental solid-state physics. Intense light pulses in the terahertz (THz) spectral range have opened fascinating vistas: Since THz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for THz amplitudes reaching atomic field strengths. We exploit controlled THz waveforms with peak fields of 72 MV/cm to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire THz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent THz-rate electronics.
When atoms or molecules are exposed to strong short-pulse infrared radiation, ionization as well as frustrated tunneling ionization (FTI) can occur, in which a portion of the almost ionized electrons recombine into the initial ground or an excited bound state. We analyze the ellipticity dependence of the relative signals that are predicted in a single-active electron approximation (SAE), the validity of which is checked against a parameter-free multi-electron hbox{$R$-matrix} (close-coupling) with time dependence approach. We find good agreement between the results from both models, thereby providing confidence in the SAE model potential to treat the process of interest. Comparison of the relative excitation probabilities found in our numerical calculations with the predictions of Landsman {it et al.} (New Journal of Physics {bf 15} (2013) 013001) and Zhao {it et al.} (Optics Express {bf 27} (2019) 21689) reveals good agreement with the former for short pulses. For longer pulses, the ellipticity dependence becomes wider than that obtained from the Landsman {it et al.} formula, but we do not obtain the increase compared to linearly polarized radiation predicted by Zhao {it et al.}
85 - Yongguan Ke , Shi Hu , Bo Zhu 2020
Adiabatic quantum pumping in one-dimensional lattices is extended by adding a tilted potential to probe better topologically nontrivial bands. This extension leads to almost perfectly quantized pumping for an arbitrary initial state selected in a band of interest, including Bloch states. In this approach, the time variable offers not only a synthetic dimension as in the case of the Thouless pumping, but it assists also in the uniform sampling of all momenta due to the Bloch oscillations induced by the tilt. The quantized drift of Bloch oscillations is determined by a one-dimensional time integral of the Berry curvature, being effectively an integer multiple of the topological Chern number in the Thouless pumping. Our study offers a straightforward approach to yield quantized pumping, and it is useful for probing topological phase transitions.
We report on the control of interaction-induced dephasing of Bloch oscillations for an atomic Bose-Einstein condensate in an optical lattice under the influence of gravity. When tuning the strength of the interaction towards zero by means of a Feshbach resonance, the dephasing time is increased from a few to more than twenty thousand Bloch oscillation periods. We quantify the dephasing in terms of the width of the quasi-momentum distribution and measure its dependence on time for different values of the scattering length. Minimizing the dephasing allows us to realize a BEC-based atom interferometer in the non-interacting limit. We use it for a precise determination of a zero-crossing for the atomic scattering length and to observe collapse and revivals of Bloch oscillations when the atomic sample is subject to a spatial force gradient.
A method for diffracting the weak probe beam into unidirectional and higher-order directions is proposed via a novel Rydberg electromagnetically induced grating, providing a new way for the implementations of quantum devices with cold Rydberg atoms. The proposed scheme utilizes a suitable and position-dependent adjustment to the two-photon detuning besides the modulation of the standing-wave coupling field, bringing a in-phase modulation which can change the parity of the dispersion. We observe that when the modulation amplitude is appropriate, a perfect unidirectional diffraction grating can be realized. In addition, due to the mutual effect between the van der Waals (vdWs) interaction and the atom-field interaction length that deeply improves the dispersion of the medium, the probe energy can be counter-intuitively transferred into higher-order diffractions as increasing the vdWs interaction, leading to the realization of a controllable higher-order diffraction grating via strong blockade.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا