Decomposition of Gaussian processes, and factorization of positive definite kernels


Abstract in English

We establish a duality for two factorization questions, one for general positive definite (p.d) kernels $K$, and the other for Gaussian processes, say $V$. The latter notion, for Gaussian processes is stated via Ito-integration. Our approach to factorization for p.d. kernels is intuitively motivated by matrix factorizations, but in infinite dimensions, subtle measure theoretic issues must be addressed. Consider a given p.d. kernel $K$, presented as a covariance kernel for a Gaussian process $V$. We then give an explicit duality for these two seemingly different notions of factorization, for p.d. kernel $K$, vs for Gaussian process $V$. Our result is in the form of an explicit correspondence. It states that the analytic data which determine the variety of factorizations for $K$ is the exact same as that which yield factorizations for $V$. Examples and applications are included: point-processes, sampling schemes, constructive discretization, graph-Laplacians, and boundary-value problems.

Download