Do you want to publish a course? Click here

On the Approximability of Time Disjoint Walks

73   0   0.0 ( 0 )
 Added by Jesse Goodman
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We introduce the combinatorial optimization problem Time Disjoint Walks (TDW), which has applications in collision-free routing of discrete objects (e.g., autonomous vehicles) over a network. This problem takes as input a digraph $G$ with positive integer arc lengths, and $k$ pairs of vertices that each represent a trip demand from a source to a destination. The goal is to find a walk and delay for each demand so that no two trips occupy the same vertex at the same time, and so that a min-max or min-sum objective over the trip durations is realized. We focus here on the min-sum variant of Time Disjoint Walks, although most of our results carry over to the min-max case. We restrict our study to various subclasses of DAGs, and observe that there is a sharp complexity boundary between Time Disjoint Walks on oriented stars and on oriented stars with the central vertex replaced by a path. In particular, we present a poly-time algorithm for min-sum and min-max TDW on the former, but show that min-sum TDW on the latter is NP-hard. Our main hardness result is that for DAGs with max degree $Deltaleq3$, min-sum Time Disjoint Walks is APX-hard. We present a natural approximation algorithm for the same class, and provide a tight analysis. In particular, we prove that it achieves an approximation ratio of $Theta(k/log k)$ on bounded-degree DAGs, and $Theta(k)$ on DAGs and bounded-degree digraphs.



rate research

Read More

For two positive integers $k$ and $ell$, a $(k times ell)$-spindle is the union of $k$ pairwise internally vertex-disjoint directed paths with $ell$ arcs between two vertices $u$ and $v$. We are interested in the (parameterized) complexity of several problems consisting in deciding whether a given digraph contains a subdivision of a spindle, which generalize both the Maximum Flow and Longest Path problems. We obtain the following complexity dichotomy: for a fixed $ell geq 1$, finding the largest $k$ such that an input digraph $G$ contains a subdivision of a $(k times ell)$-spindle is polynomial-time solvable if $ell leq 3$, and NP-hard otherwise. We place special emphasis on finding spindles with exactly two paths and present FPT algorithms that are asymptotically optimal under the ETH. These algorithms are based on the technique of representative families in matroids, and use also color-coding as a subroutine. Finally, we study the case where the input graph is acyclic, and present several algorithmic and hardness results.
A directed odd cycle transversal of a directed graph (digraph) $D$ is a vertex set $S$ that intersects every odd directed cycle of $D$. In the Directed Odd Cycle Transversal (DOCT) problem, the input consists of a digraph $D$ and an integer $k$. The objective is to determine whether there exists a directed odd cycle transversal of $D$ of size at most $k$. In this paper, we settle the parameterized complexity of DOCT when parameterized by the solution size $k$ by showing that DOCT does not admit an algorithm with running time $f(k)n^{O(1)}$ unless FPT = W[1]. On the positive side, we give a factor $2$ fixed parameter tractable (FPT) approximation algorithm for the problem. More precisely, our algorithm takes as input $D$ and $k$, runs in time $2^{O(k^2)}n^{O(1)}$, and either concludes that $D$ does not have a directed odd cycle transversal of size at most $k$, or produces a solution of size at most $2k$. Finally, we provide evidence that there exists $epsilon > 0$ such that DOCT does not admit a factor $(1+epsilon)$ FPT-approximation algorithm.
Paths $P_1,ldots,P_k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P_i$ and $P_j$ have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P_i$ such that each $P_i$ connects $s_i$ and $t_i$. This is a classical graph problem that is NP-complete even for $k=2$. We study it for AT-free graphs. Unlike its subclasses of permutation graphs and cocomparability graphs, the class of AT-free graphs has no geometric intersection model. However, by a new, structural analysis of the behaviour of Induced Disjoint Paths for AT-free graphs, we prove that it can be solved in polynomial time for AT-free graphs even when $k$ is part of the input. This is in contrast to the situation for other well-known graph classes, such as planar graphs, claw-free graphs, or more recently, (theta,wheel)-free graphs, for which such a result only holds if $k$ is fixed. As a consequence of our main result, the problem of deciding if a given AT-free graph contains a fixed graph $H$ as an induced topological minor admits a polynomial-time algorithm. In addition, we show that such an algorithm is essentially optimal by proving that the problem is W[1]-hard with parameter $|V_H|$, even on a subclass of AT-free graph, namely cobipartite graphs. We also show that the problems $k$-in-a-Path and $k$-in-a-Tree are polynomial-time solvable on AT-free graphs even if $k$ is part of the input. These problems are to test if a graph has an induced path or induced tree, respectively, spanning $k$ given vertices.
A dynamic network ${cal N} = (G,c,tau,S)$ where $G=(V,E)$ is a graph, integers $tau(e)$ and $c(e)$ represent, for each edge $ein E$, the time required to traverse edge $e$ and its nonnegative capacity, and the set $Ssubseteq V$ is a set of sources. In the $k$-{sc Sink Location} problem, one is given as input a dynamic network ${cal N}$ where every source $uin S$ is given a nonnegative supply value $sigma(u)$. The task is then to find a set of sinks $X = {x_1,ldots,x_k}$ in $G$ that minimizes the routing time of all supply to $X$. Note that, in the case where $G$ is an undirected graph, the optimal position of the sinks in $X$ needs not be at vertices, and can be located along edges. Hoppe and Tardos showed that, given an instance of $k$-{sc Sink Location} and a set of $k$ vertices $Xsubseteq V$, one can find an optimal routing scheme of all the supply in $G$ to $X$ in polynomial time, in the case where graph $G$ is directed. Note that when $G$ is directed, this suffices to obtain polynomial-time solvability of the $k$-{sc Sink Location} problem, since any optimal position will be located at vertices of $G$. However, the computational complexity of the $k$-{sc Sink Location} problem on general undirected graphs is still open. In this paper, we show that the $k$-{sc Sink Location} problem admits a fully polynomial-time approximation scheme (FPTAS) for every fixed $k$, and that the problem is $W[1]$-hard when parameterized by $k$.
It is well known that Sparse PCA (Sparse Principal Component Analysis) is NP-hard to solve exactly on worst-case instances. What is the complexity of solving Sparse PCA approximately? Our contributions include: 1) a simple and efficient algorithm that achieves an $n^{-1/3}$-approximation; 2) NP-hardness of approximation to within $(1-varepsilon)$, for some small constant $varepsilon > 0$; 3) SSE-hardness of approximation to within any constant factor; and 4) an $expexpleft(Omegaleft(sqrt{log log n}right)right)$ (quasi-quasi-polynomial) gap for the standard semidefinite program.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا