Do you want to publish a course? Click here

Photon-Induced Suppression of Interlayer Tunneling in Van Der Waals Heterostructures

184   0   0.0 ( 0 )
 Added by Wang-Kong Tse
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a theory for interlayer tunneling in van der Waals heterostructures driven under a strong electromagnetic field, using graphene/{it h}-BN/graphene as a paradigmatic example. Our theory predicts that strong anti-resonances appear at bias voltage values equal to an integer multiple of the light frequency. These features are found to originate from photon-assisted resonant tunneling transitions between Floquet sidebands of different graphene layers, and are unique to two-band systems due to the interplay of both intraband and interband tunneling transitions. Our results point to the possibility of tunneling localization in van der Waals heterostructures using strong electromagnetic fields.



rate research

Read More

Exciton binding energies of hundreds of meV and strong light absorption in the optical frequency range make transition metal dichalcogenides (TMDs) promising for novel optoelectronic nanodevices. In particular, atomically thin TMDs can be stacked to heterostructures enabling the design of new materials with tailored properties. The strong Coulomb interaction gives rise to interlayer excitons, where electrons and holes are spatially separated in different layers. In this work, we reveal the microscopic processes behind the formation, thermalization and decay of these fundamentally interesting and technologically relevant interlayer excitonic states. In particular, we present for the exemplary MoSe$_2$-WSe$_2$ heterostructure the interlayer exciton binding energies and wave functions as well as their time- and energy-resolved dynamics. Finally, we predict the dominant contribution of interlayer excitons to the photoluminescence of these materials.
Throughout the years, strongly correlated coherent states of excitons have been the subject of intense theoretical and experimental studies. This topic has recently boomed due to new emerging quantum materials such as van der Waals (vdW) bound atomically thin layers of transition metal dichalcogenides (TMDs). We analyze the collective properties of charged interlayer excitons observed recently in bilayer TMD heterostructures. We predict new strongly correlated phases - crystal and Wigner crystal - that can be selectively realized with TMD bilayers of properly chosen electron-hole effective masses by just varying their interlayer separation distance. Our results open up new avenues for nonlinear coherent control, charge transport and spinoptronics applications with quantum vdW heterostuctures.
The properties of van der Waals (vdW) heterostructures are drastically altered by a tunable moire superlattice arising from periodic variations of atomic alignment between the layers. Exciton diffusion represents an important channel of energy transport in semiconducting transition metal dichalcogenides (TMDs). While early studies performed on TMD heterobilayers have suggested that carriers and excitons exhibit long diffusion lengths, a rich variety of scenarios can exist. In a moire crystal with a large supercell size and deep potential, interlayer excitons may be completely localized. As the moire period reduces at a larger twist angle, excitons can tunnel between supercells and diffuse over a longer lifetime. The diffusion length should be the longest in commensurate heterostructures where the moire superlattice is completely absent. In this study, we experimentally demonstrate that the moire potential impedes interlayer exciton diffusion by comparing a number of WSe2/MoSe2 heterostructures prepared with chemical vapor deposition and mechanical stacking with accurately controlled twist angles. Our results provide critical guidance to developing twistronic devices that explore the moire superlattice to engineer material properties.
In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate how a unique control knob, the twist angle between the two monolayers, can be used to control the exciton dynamics. We observe that the interlayer exciton lifetimes in $text{MoSe}_{text{2}}$/$text{WSe}_{text{2}}$ twisted bilayers (TBLs) change by one order of magnitude when the twist angle is varied from 1$^circ$ to 3.5$^circ$. Using a low-energy continuum model, we theoretically separate two leading mechanisms that influence interlayer exciton radiative lifetimes. The shift to indirect transitions in the momentum space with an increasing twist angle and the energy modulation from the moire potential both have a significant impact on interlayer exciton lifetimes. We further predict distinct temperature dependence of interlayer exciton lifetimes in TBLs with different twist angles, which is partially validated by experiments. While many recent studies have highlighted how the twist angle in a vdW TBL can be used to engineer the ground states and quantum phases due to many-body interaction, our studies explore its role in controlling the dynamics of optically excited states, thus, expanding the conceptual applications of twistronics.
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here we report novel multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. These devices also show multiple resistance states as a function of magnetic field, suggesting the potential for multi-bit functionalities using an individual vdW sf-MTJ. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI3. Our work reveals the possibility to push magnetic information storage to the atomically thin limit, and highlights CrI3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا