No Arabic abstract
We present a 3D hydrodynamics study of gravitational instabilities (GIs) in a 0.14 M$_{odot}$ circumbinary protoplanetary disc orbiting a 1 M$_{odot}$ star and a 0.02 M$_{odot}$ brown dwarf companion. We examine the thermodynamical state of the disc and determine the strengths of GI-induced density waves, nonaxisymmetric density structures, mass inflow and outflow, and gravitational torques. Results are compared with a parallel simulation of a protoplanetary disc without the brown dwarf binary companion. Simulations are performed using CHYMERA, a radiative 3D hydrodynamics code. The onset of GIs in the circumbinary disc is much more violent due to the stimulation of a strong one-armed density wave by the brown dwarf. Despite this early difference, detailed analyses show that both discs relax to a very similar quasi-steady phase by 2,500 years after the beginning of the simulations. Similarities include the thermodynamics of the quasi-steady phase, the final surface density distribution, radial mass influx, and nonaxisymmetric power and torques for spiral arm multiplicities of two or more. Effects of binarity in the disc are evident in gravitational torque profiles, temperature profiles in the inner discs, and radial mass transport. After 3,800 years, the semimajor axis of the binary decreases by about one percentage and the eccentricity roughly doubles. The mass transport in the outer circumbinary disc associated with the one-armed wave may influence planet formation.
Most stars form in binaries, and both stars may grow by accreting material from a circumbinary disc onto their personal discs. We suspect that in many cases a wide molecular wind will envelope a collimated atomic jet emanating from close to an orbiting young star. This so-called Circumbinary Scenario is explored here in order to find common identifiable properties. The dynamical set up is studied with three dimensional simulations with chemistry and cooling included. We extract the properties on scales of order 100,AU and compare to the Co-Orbital Scenario in which the wind and jet sources are in orbit. We find that the rapid orbital motion generates a wide ionised sheath around the jet core with a large opening angle at the base. This is independent of the presence of the surrounding molecular outflow. However, the atomic jet is recollimated beyond ~ 55 AU when the molecular outflow restricts the motion of the ambient medium which, in turn, confines the jet. These physical properties are relayed to the optical H-alpha imaging, providing a means of distinguishing between models. The high excitation sheath and recollimation region can be explored on these scales through the next generation of instruments. However, in general, the amount and location of the ionised material, whether in the knots or the sheath, will depend on several parameters including the orbital period, axis alignment and pulse amplitude.
[Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. We highlight open questions related to (1) the development of a turbulent cascade in thin disks, and (2) the role of mode-mode coupling in setting the maximum angular momentum transport rate in thick disks.
We aim to constrain the structure of the circumstellar material around the post-AGB binary and RV Tauri pulsator AC Her. We want to constrain the spatial distribution of the amorphous as well as of the crystalline dust. We present very high-quality mid-IR interferometric data that were obtained with MIDI/VLTI. We analyse the MIDI data and the full SED, using the MCMax radiative transfer code, to find a good structure model of AC Hers circumbinary disk. We include a grain size distribution and midplane settling of dust self-consistently. The spatial distribution of crystalline forsterite in the disk is investigated with the mid-IR features, the 69~$mu$m band and the 11.3~$mu$m signatures in the interferometric data. All the data are well fitted. The inclination and position angle of the disk are well determined at i=50+-8 and PA=305+-10. We firmly establish that the inner disk radius is about an order of magnitude larger than the dust sublimation radius. Significant grain growth has occurred, with mm-sized grains being settled to the midplane of the disk. A large dust mass is needed to fit the sub-mm fluxes. By assuming {alpha}=0.01, a good fit is obtained with a small grain size power law index of 3.25, combined with a small gas/dust ratio <10. The resulting gas mass is compatible with recent estimates employing direct gas diagnostics. The spatial distribution of the forsterite is different from the amorphous dust, as more warm forsterite is needed in the surface layers of the inner disk. The disk in AC Her is very evolved, with its small gas/dust ratio and large inner hole. Mid-IR interferometry offers unique constraints, complementary to mid-IR features, for studying the mineralogy in disks. A better uv coverage is needed to constrain in detail the distribution of the crystalline forsterite in AC Her, but we find strong similarities with the protoplanetary disk HD100546.
The presence of stable, compact circumbinary discs of gas and dust around post-asymptotic giant branch (post-AGB) binary systems has been well established. We focus on one such system: IRAS 08544-4431. We present an interferometric multi-wavelength analysis of the circumstellar environment of IRAS 08544-4431. The aim is to constrain different contributions to the total flux in the H, K, L, and N-bands in the radial direction. The data from VLTI/PIONIER, VLTI/GRAVITY, and VLTI/MATISSE range from the near-infrared, where the post-AGB star dominates, to the mid-infrared, where the disc dominates. We fitted two geometric models to the visibility data to reproduce the circumbinary disc: a ring with a Gaussian width and a flat disc model with a temperature gradient. The flux contributions from the disc, the primary star (modelled as a point-source), and an over-resolved component are recovered along with the radial size of the emission, the temperature of the disc as a function of radius, and the spectral dependencies of the different components. The trends of all visibility data were well reproduced with the geometric models. The near-infrared data were best fitted with a Gaussian ring model while the mid-infrared data favoured a temperature gradient model. This implies that a vertical structure is present at the disc inner rim, which we attribute to a rounded puffed-up inner rim. The N-to-K size ratio is 2.8, referring to a continuous flat source, analogues to young stellar objects. By combining optical interferometric instruments operating at different wavelengths we can resolve the complex structure of circumstellar discs and study the wavelength-dependent opacity profile. A detailed radial, vertical, and azimuthal structural analysis awaits a radiative transfer treatment in 3D to capture all non-radial complexity.
IRAS~04158+2805 has long been thought to be a very low mass T-Tauri star (VLMS) surrounded by a nearly edge-on, extremely large disc. Recent observations revealed that this source hosts a binary surrounded by an extended circumbinary disc with a central dust cavity. In this paper, we combine ALMA multi-wavelength observations of continuum and $^{12}$CO line emission, with H$alpha$ imaging and Keck astrometric measures of the binary to develop a coherent dynamical model of this system. The system features an azimuthal asymmetry detected at the western edge of the cavity in Band~7 observations and a wiggling outflow. Dust emission in ALMA Band 4 from the proximity of the individual stars suggests the presence of marginally resolved circumstellar discs. We estimate the binary orbital parameters from the measured arc of the orbit from Keck and ALMA astrometry. We further constrain these estimates using considerations from binary-disc interaction theory. We finally perform three SPH gas + dust simulations based on the theoretical constraints; we post-process the hydrodynamic output using radiative transfer Monte Carlo methods and directly compare the models with observations. Our results suggest that a highly eccentric $esim 0.5textrm{--}0.7$ equal mass binary, with a semi-major axis of $sim 55$ au, and small/moderate orbital plane vs. circumbinary disc inclination $thetalesssim 30^circ$ provides a good match with observations. A dust mass of $sim 1.5times 10^{-4} {rm M_odot}$ best reproduces the flux in Band 7 continuum observations. Synthetic CO line emission maps qualitatively capture both the emission from the central region and the non-Keplerian nature of the gas motion in the binary proximity.