Do you want to publish a course? Click here

Basics of doubly heavy tetraquarks

384   0   0.0 ( 0 )
 Added by Alfredo Valcarce
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We outline the most important results regarding the stability of doubly heavy tetraquarks $QQbar qbar q$ with an adequate treatment of the four-body dynamics. We consider both color-mixing and spin-dependent effects. Our results are straightforwardly applied to the case of all-heavy tetraquarks $QQbar Qbar Q$. We conclude that the stability is favored in the limit $M_Q/m_q gg 1$ pointing to the stability of the $bbbar ubar d$ state and the instability of all-heavy tetraquarks.



rate research

Read More

Doubly heavy tetraquark $(QQbar qbar q)$ states are the prime candidates of tightly bound exotic systems and weakly decaying. In the framework of the improved chromomagnetic interaction (ICMI) model, we complete a systematic study on the mass spectra of the $S$-wave doubly heavy tetraquark states $QQbar{q}bar{q}$ ($q=u, d, s$ and $Q=c, b$) with different quantum numbers $J^P=0^+$, $1^+$, and $2^+$. The parameters in the ICMI model are extracted by fitting the conventional hadron spectra and used directly to predict the masses of tetraquark states. For heavy quarks, the uncertainties of the parameters are acquired by comparing the masses of doubly (triply) heavy baryons with these given by lattice QCD, QCD sum rule, and potential models. Several compact and stable bound states are found in both charm and bottom tetraquark sectors. The predicted mass of $ccbar ubar d$ state is compatible with the recent result of the LHCb collaboration.
Using an extended chromomagnetic model, we perform a systematic study of the masses of the doubly heavy tetraquarks. We find that the ground states of the doubly heavy tetraquarks are dominated by color-triplet $ket{(qq)^{bar{3}_{c}}(bar{Q}bar{Q})^{3_{c}}}$ configuration, which is opposite to that of the fully heavy tetraquarks. The combined results suggest that the color-triplet configuration becomes more important when the mass difference between the quarks and antiquarks increases. We find three stable states which lie below the thresholds of two pseudoscalar mesons. They are the $IJ^{P}=01^{+}$ $nnbar{b}bar{b}$ tetraquark, the $IJ^{P}=00^{+}$ $nnbar{c}bar{b}$ tetraquark and the $J^{P}=1^{+}$ $nsbar{b}bar{b}$ tetraquark.
Spectrum of the doubly heavy tetraquarks, $bbbar qbar q$, is studied in a constituent quark model. Four-body problem is solved in a variational method where the real scaling technique is used to identify resonant states above the fall-apart decay thresholds. In addition to the two bound states that were reported in the previous study we have found several narrow resonant states above the $BB^*$ and $B^*B^*$ thresholds. Their structures are studied and are interpreted by the quark dynamics. A narrow resonance with spin-parity $J^P=1^+$ is found to be a mixed state of a compact tetraquark and a $B^*B^*$ scattering state. This is driven by a strong color Coulombic attraction between the $bb$ quarks. Negative-parity excited resonances with $J^P=0^-$, $1^-$ and $2^-$ form a triplet under the heavy-quark spin symmetry. It turns out that they share a similar structure to the $lambda$-mode of a singly heavy baryon as a result of the strongly attractive correlation for the doubly heavy diquark.
In this paper we present in greater detail previous work on the Born-Oppenheimer approximation to treat the hydrogen bond of QCD, and add a similar treatment of doubly heavy baryons. Doubly heavy exotic resonances X and Z can be described as color molecules of two-quark lumps, the analogue of the H_2 molecule, and doubly heavy baryons as the analog of the H_2^+ ion, except that the two heavy quarks attract each other. We compare our results with constituent quark model and lattice QCD calculations and find further evidence in support of this upgraded picture of compact tetraquarks and baryons.
Alerted by the recent LHCb discovery of exotic hadrons in the range (6.2 -- 6.9) GeV, we present new results for the doubly-hidden scalar heavy $(bar QQ) (Qbar Q)$ charm and beauty molecules using the inverse Laplace transform sum rule (LSR) within stability criteria and including the Next-to-Leading Order (NLO) factorized perturbative and $langle G^3rangle$ gluon condensate corrections. We also critically revisit and improve existing Lowest Order (LO) QCD spectral sum rules (QSSR) estimates of the $({ bar Q bar Q})(QQ)$ tetraquarks analogous states. In the example of the anti-scalar-scalar molecule, we separate explicitly the contributions of the factorized and non-factorized contributions to LO of perturbative QCD and to the $langlealpha_sG^2rangle$ gluon condensate contributions in order to disprove some criticisms on the (mis)uses of the sum rules for four-quark currents. We also re-emphasize the importance to include PT radiative corrections for heavy quark sum rules in order to justify the (ad hoc) definition and value of the heavy quark mass used frequently at LO in the literature. Our LSR results for tetraquark masses summarized in Table II are compared with the ones from ratio of moments (MOM) at NLO and results from LSR and ratios of MOM at LO (Table IV). The LHCb broad structure around (6.2 --6.7) GeV can be described by the $overline{eta}_{c}{eta}_{c}$, $overline{J/psi}{J/psi}$ and $overline{chi}_{c1}{chi}_{c1}$ molecules or/and their analogue tetraquark scalar-scalar, axial-axial and vector-vector lowest mass ground states. The peak at (6.8--6.9) GeV can be likely due to a $overline{chi}_{c0}{chi}_{c0}$ molecule or/and a pseudoscalar-pseudoscalar tetraquark state. Similar analysis is done for the scalar beauty states whose masses are found to be above the $overlineeta_beta_b$ and $overlineUpsilon(1S)Upsilon(1S)$ thresholds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا