Do you want to publish a course? Click here

Eyes on the Prize: Improved Biological Surface Registration via Forward Propagation

323   0   0.0 ( 0 )
 Added by Robert Ravier
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Many algorithms for surface registration risk producing significant errors if surfaces are significantly nonisometric. Manifold learning has been shown to be effective at improving registration quality, using information from an entire collection of surfaces to correct issues present in pairwise registrations. These methods, however, are not robust to changes in the collection of surfaces, or do not produce accurate registrations at a resolution high enough for subsequent downstream analysis. We propose a novel algorithm for efficiently registering such collections given initial correspondences with varying degrees of accuracy. By combining the initial information with recent developments in manifold learning, we employ a simple metric condition to construct a measure on the space of correspondences between any pair of shapes in our collection, which we then use to distill soft correspondences. We demonstrate that this measure can improve correspondence accuracy between feature points compared to currently employed, less robust methods on a diverse dataset of surfaces from evolutionary biology. We then show how our methods can be used, in combination with recent sampling and interpolation methods, to compute accurate and consistent homeomorphisms between surfaces.



rate research

Read More

We present a method for differentiable rendering of 3D surfaces that supports both explicit and implicit representations, provides derivatives at occlusion boundaries, and is fast and simple to implement. The method first samples the surface using non-differentiable rasterization, then applies differentiable, depth-aware point splatting to produce the final image. Our approach requires no differentiable meshing or rasterization steps, making it efficient for large 3D models and applicable to isosurfaces extracted from implicit surface definitions. We demonstrate the effectiveness of our method for implicit-, mesh-, and parametric-surface-based inverse rendering and neural-network training applications. In particular, we show for the first time efficient, differentiable rendering of an isosurface extracted from a neural radiance field (NeRF), and demonstrate surface-based, rather than volume-based, rendering of a NeRF.
Establishing a consistent normal orientation for point clouds is a notoriously difficult problem in geometry processing, requiring attention to both local and global shape characteristics. The normal direction of a point is a function of the local surface neighborhood; yet, point clouds do not disclose the full underlying surface structure. Even assuming known geodesic proximity, calculating a consistent normal orientation requires the global context. In this work, we introduce a novel approach for establishing a globally consistent normal orientation for point clouds. Our solution separates the local and global components into two different sub-problems. In the local phase, we train a neural network to learn a coherent normal direction per patch (i.e., consistently oriented normals within a single patch). In the global phase, we propagate the orientation across all coherent patches using a dipole propagation. Our dipole propagation decides to orient each patch using the electric field defined by all previously orientated patches. This gives rise to a global propagation that is stable, as well as being robust to nearby surfaces, holes, sharp features and noise.
This paper introduces a novel geometric multigrid solver for unstructured curved surfaces. Multigrid methods are highly efficient iterative methods for solving systems of linear equations. Despite the success in solving problems defined on structured domains, generalizing multigrid to unstructured curved domains remains a challenging problem. The critical missing ingredient is a prolongation operator to transfer functions across different multigrid levels. We propose a novel method for computing the prolongation for triangulated surfaces based on intrinsic geometry, enabling an efficient geometric multigrid solver for curved surfaces. Our surface multigrid solver achieves better convergence than existing multigrid methods. Compared to direct solvers, our solver is orders of magnitude faster. We evaluate our method on many geometry processing applications and a wide variety of complex shapes with and without boundaries. By simply replacing the direct solver, we upgrade existing algorithms to interactive frame rates, and shift the computational bottleneck away from solving linear systems.
Non-rigid cortical registration is an important and challenging task due to the geometric complexity of the human cortex and the high degree of inter-subject variability. A conventional solution is to use a spherical representation of surface properties and perform registration by aligning cortical folding patterns in that space. This strategy produces accurate spatial alignment but often requires a high computational cost. Recently, convolutional neural networks (CNNs) have demonstrated the potential to dramatically speed up volumetric registration. However, due to distortions introduced by projecting a sphere to a 2D plane, a direct application of recent learning-based methods to surfaces yields poor results. In this study, we present SphereMorph, a diffeomorphic registration framework for cortical surfaces using deep networks that addresses these issues. SphereMorph uses a UNet-style network associated with a spherical kernel to learn the displacement field and warps the sphere using a modified spatial transformer layer. We propose a resampling weight in computing the data fitting loss to account for distortions introduced by polar projection, and demonstrate the performance of our proposed method on two tasks, including cortical parcellation and group-wise functional area alignment. The experiments show that the proposed SphereMorph is capable of modeling the geometric registration problem in a CNN framework and demonstrate superior registration accuracy and computational efficiency. The source code of SphereMorph will be released to the public upon acceptance of this manuscript at https://github.com/voxelmorph/spheremorph.
Batch Normalization (BN) has been a standard component in designing deep neural networks (DNNs). Although the standard BN can significantly accelerate the training of DNNs and improve the generalization performance, it has several underlying limitations which may hamper the performance in both training and inference. In the training stage, BN relies on estimating the mean and variance of data using a single minibatch. Consequently, BN can be unstable when the batch size is very small or the data is poorly sampled. In the inference stage, BN often uses the so called moving mean and moving variance instead of batch statistics, i.e., the training and inference rules in BN are not consistent. Regarding these issues, we propose a memorized batch normalization (MBN), which considers multiple recent batches to obtain more accurate and robust statistics. Note that after the SGD update for each batch, the model parameters will change, and the features will change accordingly, leading to the Distribution Shift before and after the update for the considered batch. To alleviate this issue, we present a simple Double-Forward scheme in MBN which can further improve the performance. Compared to related methods, the proposed MBN exhibits consistent behaviors in both training and inference. Empirical results show that the MBN based models trained with the Double-Forward scheme greatly reduce the sensitivity of data and significantly improve the generalization performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا