No Arabic abstract
In classic Kelly gambling, bets are chosen to maximize the expected log growth of wealth, under a known probability distribution. Breiman provides rigorous mathematical proofs that Kelly strategy maximizes the rate of asset growth (asymptotically maximal magnitude property), which is thought of as the principal justification for selecting expected logarithmic utility as the guide to portfolio selection. Despite very nice theoretical properties, the classic Kelly strategy is rarely used in practical portfolio allocation directly due to practically unavoidable uncertainty. In this paper we consider the distributional robust version of the Kelly gambling problem, in which the probability distribution is not known, but lies in a given set of possible distributions. The bet is chosen to maximize the worst-case (smallest) expected log growth among the distributions in the given set. Computationally, this distributional robust Kelly gambling problem is convex, but in general need not be tractable. We show that it can be tractably solved in a number of useful cases when there is a finite number of outcomes with standard tools from disciplined convex programming. Theoretically, in sequential decision making with varying distribution within a given uncertainty set, we prove that distributional robust Kelly strategy asymptotically maximizes the worst-case rate of asset growth, and dominants any other essentially different strategy by magnitude. Our results extends Breimans theoretical result and justifies that the distributional robust Kelly strategy is the optimal strategy in the long-run for practical betting with uncertainty.
In practice, one must recognize the inevitable incompleteness of information while making decisions. In this paper, we consider the optimal redeeming problem of stock loans under a state of incomplete information presented by the uncertainty in the (bull or bear) trends of the underlying stock. This is called drift uncertainty. Due to the unavoidable need for the estimation of trends while making decisions, the related Hamilton-Jacobi-Bellman (HJB) equation is of a degenerate parabolic type. Hence, it is very hard to obtain its regularity using the standard approach, making the problem different from the existing optimal redeeming problems without drift uncertainty. We present a thorough and delicate probabilistic and functional analysis to obtain the regularity of the value function and the optimal redeeming strategies. The optimal redeeming strategies of stock loans appear significantly different in the bull and bear trends.
We study an intertemporal consumption and portfolio choice problem under Knightian uncertainty in which agents preferences exhibit local intertemporal substitution. We also allow for market frictions in the sense that the pricing functional is nonlinear. We prove existence and uniqueness of the optimal consumption plan, and we derive a set of sufficient first-order conditions for optimality. With the help of a backward equation, we are able to determine the structure of optimal consumption plans. We obtain explicit solutions in a stationary setting in which the financial market has different risk premia for short and long positions.
Optimization of distortion riskmetrics with distributional uncertainty has wide applications in finance and operations research. Distortion riskmetrics include many commonly applied risk measures and deviation measures, which are not necessarily monotone or convex. One of our central findings is a unifying result that allows us to convert an optimization of a non-convex distortion riskmetric with distributional uncertainty to a convex one, leading to great tractability. The key to the unifying equivalence result is the novel notion of closedness under concentration of sets of distributions. Our results include many special cases that are well studied in the optimization literature, including but not limited to optimizing probabilities, Value-at-Risk, Expected Shortfall, and Yaaris dual utility under various forms of distributional uncertainty. We illustrate our theoretical results via applications to portfolio optimization, optimization under moment constraints, and preference robust optimization.
This paper addresses the problem of utility maximization under uncertain parameters. In contrast with the classical approach, where the parameters of the model evolve freely within a given range, we constrain them via a penalty function. We show that this robust optimization process can be interpreted as a two-player zero-sum stochastic differential game. We prove that the value function satisfies the Dynamic Programming Principle and that it is the unique viscosity solution of an associated Hamilton-Jacobi-Bellman-Isaacs equation. We test this robust algorithm on real market data. The results show that robust portfolios generally have higher expected utilities and are more stable under strong market downturns. To solve for the value function, we derive an analytical solution in the logarithmic utility case and obtain accurate numerical approximations in the general case by three methods: finite difference method, Monte Carlo simulation, and Generative Adversarial Networks.
To ensure a successful bid while maximizing of profits, generation companies (GENCOs) need a self-scheduling strategy that can cope with a variety of scenarios. So distributionally robust opti-mization (DRO) is a good choice because that it can provide an adjustable self-scheduling strategy for GENCOs in the uncertain environment, which can well balance robustness and economics compared to strategies derived from robust optimization (RO) and stochastic programming (SO). In this paper, a novel mo-ment-based DRO model with conditional value-at-risk (CVaR) is proposed to solve the self-scheduling problem under electricity price uncertainty. Such DRO models are usually translated into semi-definite programming (SDP) for solution, however, solving large-scale SDP needs a lot of computational time and resources. For this shortcoming, two effective approximate models are pro-posed: one approximate model based on vector splitting and an-other based on alternate direction multiplier method (ADMM), both can greatly reduce the calculation time and resources, and the second approximate model only needs the information of the current area in each step of the solution and thus information private is guaranteed. Simulations of three IEEE test systems are conducted to demonstrate the correctness and effectiveness of the proposed DRO model and two approximate models.