Crossing invariant correlation functions at $c=1$ from isomonodromic $tau$ functions


Abstract in English

We present an approach that gives rigorous construction of a class of crossing invariant functions in $c=1$ CFTs from the weakly invariant distributions on the moduli space $mathcal M_{0,4}^{SL(2,mathbb{C})}$ of $SL(2,mathbb{C})$ flat connections on the sphere with four punctures. By using this approach we show how to obtain correlation functions in the Ashkin-Teller and the Runkel-Watts theory. Among the possible crossing-invariant theories, we obtain also the analytic Liouville theory, whose consistence was assumed only on the basis of numerical tests.

Download