Do you want to publish a course? Click here

Adaptive Pattern Matching with Reinforcement Learning for Dynamic Graphs

210   0   0.0 ( 0 )
 Added by Hiroki Kanezashi
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Graph pattern matching algorithms to handle million-scale dynamic graphs are widely used in many applications such as social network analytics and suspicious transaction detections from financial networks. On the other hand, the computation complexity of many graph pattern matching algorithms is expensive, and it is not affordable to extract patterns from million-scale graphs. Moreover, most real-world networks are time-evolving, updating their structures continuously, which makes it harder to update and output newly matched patterns in real time. Many incremental graph pattern matching algorithms which reduce the number of updates have been proposed to handle such dynamic graphs. However, it is still challenging to recompute vertices in the incremental graph pattern matching algorithms in a single process, and that prevents the real-time analysis. We propose an incremental graph pattern matching algorithm to deal with time-evolving graph data and also propose an adaptive optimization system based on reinforcement learning to recompute vertices in the incremental process more efficiently. Then we discuss the qualitative efficiency of our system with several types of data graphs and pattern graphs. We evaluate the performance using million-scale attributed and time-evolving social graphs. Our incremental algorithm is up to 10.1 times faster than an existing graph pattern matching and 1.95 times faster with the adaptive systems in a computation node than naive incremental processing.



rate research

Read More

In exploratory data analysis, analysts often have a need to identify histograms that possess a specific distribution, among a large class of candidate histograms, e.g., find countries whose income distribution is most similar to that of Greece. This distribution could be a new one that the user is curious about, or a known distribution from an existing histogram visualization. At present, this process of identification is brute-force, requiring the manual generation and evaluation of a large number of histograms. We present FastMatch: an end-to-end approach for interactively retrieving the histogram visualizations most similar to a user-specified target, from a large collection of histograms. The primary technical contribution underlying FastMatch is a probabilistic algorithm, HistSim, a theoretically sound sampling-based approach to identify the top-$k$ closest histograms under $ell_1$ distance. While HistSim can be used independently, within FastMatch we couple HistSim with a novel system architecture that is aware of practical considerations, employing asynchronous block-based sampling policies, building on lightweight sampling engines developed in recent work. FastMatch obtains near-perfect accuracy with up to $35times$ speedup over approaches that do not use sampling on several real-world datasets.
Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called matching dependencies (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating three components of ER: (a) Classifiers for duplicate/non-duplicate record pairs built using machine learning (ML) techniques, (b) MDs for supporting both the blocking phase of ML and the merge itself; and (c) The use of the declarative language LogiQL -an extended form of Datalog supported by the LogicBlox platform- for data processing, and the specification and enforcement of MDs.
Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called matching dependencies (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating four components of ER: (a) Building a classifier for duplicate/non-duplicate record pairs built using machine learning (ML) techniques; (b) Use of MDs for supporting the blocking phase of ML; (c) Record merging on the basis of the classifier results; and (d) The use of the declarative language LogiQL -an extended form of Datalog supported by the LogicBlox platform- for all activities related to data processing, and the specification and enforcement of MDs.
Given a stream of food orders and available delivery vehicles, how should orders be assigned to vehicles so that the delivery time is minimized? Several decisions have to be made: (1) assignment of orders to vehicles, (2) grouping orders into batches to cope with limited vehicle availability, and (3) adapting to dynamic positions of delivery vehicles. We show that the minimization problem is not only NP-hard but inapproximable in polynomial time. To mitigate this computational bottleneck, we develop an algorithm called FoodMatch, which maps the vehicle assignment problem to that of minimum weight perfect matching on a bipartite graph. To further reduce the quadratic construction cost of the bipartite graph, we deploy best-first search to only compute a subgraph that is highly likely to contain the minimum matching. The solution quality is further enhanced by reducing batching to a graph clustering problem and anticipating dynamic positions of vehicles through angular distance. Extensive experiments on food-delivery data from large metropolitan cities establish that FoodMatch is substantially better than baseline strategies on a number of metrics, while being efficient enough to handle real-world workloads.
We study episodic reinforcement learning in Markov decision processes when the agent receives additional feedback per step in the form of several transition observations. Such additional observations are available in a range of tasks through extended sensors or prior knowledge about the environment (e.g., when certain actions yield similar outcome). We formalize this setting using a feedback graph over state-action pairs and show that model-based algorithms can leverage the additional feedback for more sample-efficient learning. We give a regret bound that, ignoring logarithmic factors and lower-order terms, depends only on the size of the maximum acyclic subgraph of the feedback graph, in contrast with a polynomial dependency on the number of states and actions in the absence of a feedback graph. Finally, we highlight challenges when leveraging a small dominating set of the feedback graph as compared to the bandit setting and propose a new algorithm that can use knowledge of such a dominating set for more sample-efficient learning of a near-optimal policy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا