Do you want to publish a course? Click here

Joint T1 and T2 Mapping with Tiny Dictionaries and Subspace-Constrained Reconstruction

108   0   0.0 ( 0 )
 Added by Volkert Roeloffs
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Purpose: To develop a method that adaptively generates tiny dictionaries for joint T1-T2 mapping. Theory: This work breaks the bond between dictionary size and representation accuracy (i) by approximating the Bloch-response manifold by piece-wise linear functions and (ii) by adaptively refining the sampling grid depending on the locally-linear approximation error. Methods: Data acquisition was accomplished with use of an 2D radially sampled Inversion-Recovery Hybrid-State Free Precession sequence. Adaptive dictionaries are generated with different error tolerances and compared to a heuristically designed dictionary. Based on simulation results, tiny dictionaries were used for T1-T2 mapping in phantom and in vivo studies. Reconstruction and parameter mapping were performed entirely in subspace. Results: All experiments demonstrated excellent agreement between the proposed mapping technique and template matching using heuristic dictionaries. Conclusion: Adaptive dictionaries in combination with manifold projection allow to reduce the necessary dictionary sizes by one to two orders of magnitude.



rate research

Read More

This study presents a comparison of quantitative MRI methods based on an efficiency metric that quantifies their intrinsic ability to extract information about tissue parameters. Under a regime of unbiased parameter estimates, an intrinsic efficiency metric $eta$ was derived for fully-sampled experiments which can be used to both optimize and compare sequences. Here we optimize and compare several steady-state and transient gradient-echo based qMRI methods, such as magnetic resonance fingerprinting (MRF), for joint T1 and T2 mapping. The impact of undersampling was also evaluated, assuming incoherent aliasing that is treated as noise by parameter estimation. In-vivo validation of the efficiency metric was also performed. Transient methods such as MRF can be up to 3.5 times more efficient than steady-state methods, when spatial undersampling is ignored. If incoherent aliasing is treated as noise during least-squares parameter estimation, the efficiency is reduced in proportion to the SNR of the data, with reduction factors of 5 often seen for practical SNR levels. In-vivo validation showed a very good agreement between the theoretical and experimentally predicted efficiency. This work presents and validates an efficiency metric to optimize and compare the performance of qMRI methods. Transient methods were found to be intrinsically more efficient than steady-state methods, however the effect of spatial undersampling can significantly erode this advantage.
Purpose: To rapidly obtain high isotropic-resolution T2 maps with whole-brain coverage and high geometric fidelity. Methods: A T2 blip-up/down echo planar imaging (EPI) acquisition with generalized Slice-dithered enhanced resolution (T2-BUDA-gSlider) is proposed. A radiofrequency (RF)-encoded multi-slab spin-echo EPI acquisition with multiple echo times (TEs) was developed to obtain high SNR efficiency with reduced repetition time (TR). This was combined with an interleaved 2-shot EPI acquisition using blip-up/down phase encoding. An estimated field map was incorporated into the joint multi-shot EPI reconstruction with a structured low rank constraint to achieve distortion-free and robust reconstruction for each slab without navigation. A Bloch simulated subspace model was integrated into gSlider reconstruction and utilized for T2 quantification. Results: In vivo results demonstrated that the T2 values estimated by the proposed method were consistent with gold standard spin-echo acquisition. Compared to the reference 3D fast spin echo (FSE) images, distortion caused by off-resonance and eddy current effects were effectively mitigated. Conclusion: BUDA-gSlider SE-EPI acquisition and gSlider-subspace joint reconstruction enabled distortion-free whole-brain T2 mapping in 2 min at ~1 mm3 isotropic resolution, which could bring significant benefits to related clinical and neuroscience applications.
To rapidly obtain high resolution T2, T2* and quantitative susceptibility mapping (QSM) source separation maps with whole-brain coverage and high geometric fidelity. We propose Blip Up-Down Acquisition for Spin And Gradient Echo imaging (BUDA-SAGE), an efficient echo-planar imaging (EPI) sequence for quantitative mapping. The acquisition includes multiple T2*-, T2- and T2-weighted contrasts. We alternate the phase-encoding polarities across the interleaved shots in this multi-shot navigator-free acquisition. A field map estimated from interim reconstructions was incorporated into the joint multi-shot EPI reconstruction with a structured low rank constraint to eliminate geometric distortion. A self-supervised MR-Self2Self (MR-S2S) neural network (NN) was utilized to perform denoising after BUDA reconstruction to boost SNR. Employing Slider encoding allowed us to reach 1 mm isotropic resolution by performing super-resolution reconstruction on BUDA-SAGE volumes acquired with 2 mm slice thickness. Quantitative T2 and T2* maps were obtained using Bloch dictionary matching on the reconstructed echoes. QSM was estimated using nonlinear dipole inversion (NDI) on the gradient echoes. Starting from the estimated R2 and R2* maps, R2 information was derived and used in source separation QSM reconstruction, which provided additional para- and dia-magnetic susceptibility maps. In vivo results demonstrate the ability of BUDA-SAGE to provide whole-brain, distortion-free, high-resolution multi-contrast images and quantitative T2 and T2* maps, as well as yielding para- and dia-magnetic susceptibility maps. Derived quantitative maps showed comparable values to conventional mapping methods in phantom and in vivo measurements. BUDA-SAGE acquisition with self-supervised denoising and Slider encoding enabled rapid, distortion-free, whole-brain T2, T2* mapping at 1 mm3 isotropic resolution in 90 seconds.
Purpose: To develop a single-shot multi-slice T1 mapping method by combing simultaneous multi-slice (SMS) excitations, single-shot inversion-recovery (IR) radial fast low-angle shot (FLASH) and a nonlinear model-based reconstruction method. Methods: SMS excitations are combined with a single-shot IR radial FLASH sequence for data acquisition. A previously developed single-slice calibrationless model-based reconstruction is extended to SMS, formulating the estimation of parameter maps and coil sensitivities from all slices as a single nonlinear inverse problem. Joint-sparsity constraints are further applied to the parameter maps to improve T1 precision. Validations of the proposed method are performed for a phantom and for the human brain and liver in six healthy adult subjects. Results: Phantom results confirm good T1 accuracy and precision of the simultaneously acquired multi-slice T1 maps in comparison to single-slice references. In-vivo human brain studies demonstrate the better performance of SMS acquisitions compared to the conventional spoke-interleaved multi-slice acquisition using model-based reconstruction. Apart from good accuracy and precision, the results of six healthy subjects in both brain and abdominal studies confirm good repeatability between scan and re-scans. The proposed method can simultaneously acquire T1 maps for five slices of a human brain ($0.75 times 0.75 times 5$ mm$^3$) or three slices of the abdomen ($1.25 times 1.25 times 6$ mm$^3$) within four seconds. Conclusion: The IR SMS radial FLASH acquisition together with a non-linear model-based reconstruction enable rapid high-resolution multi-slice T1 mapping with good accuracy, precision, and repeatability.
Purpose: To develop and evaluate MyoMapNet, a rapid myocardial T1 mapping approach that uses neural networks (NN) to estimate voxel-wise myocardial T1 and extracellular (ECV) from T1-weighted images collected after a single inversion pulse over 4-5 heartbeats. Method: MyoMapNet utilizes a simple fully-connected NN to estimate T1 values from 5 (native) or 4 (post-contrast) T1-weighted images. Native MOLLI-5(3)3 T1 was collected in 717 subjects (386 males, 55$pm$16.5 years) and post-contrast MOLLI-4(1)3(1)2 in 535 subjects (232 male, 56.5$pm$15 years). The dataset was divided into training (80%) and testing (20%), where 20% of the training set was used to optimize MyoMapNet architecture (size and loss functions). We used MyoMapNet to estimate T1 and ECV maps with the first 5 (native) or 4 (post-contrast) T1-weighted images from the corresponding MOLLI sequence compared to the conventional and an abbreviated MOLLI using similar number of T1-weighted images with 3-parameter curve-fitting. Results: In our preliminary optimizaiton step, we determined that a 5-layers NN trained using mean-absolute-error loss yields lower estimation errors and was used subsequently in independent testing study. The myocardial T1 by MyoMapNet was similar to MOLLI (1200$pm$45ms vs. 1199$pm$46ms; P=0.3 for native T1, and 27.3$pm$3.5% vs. 27.1$pm$4%; P=0.4 for ECV). MyoMapNet had significantly smaller errors in T1 estimations compared to abbreviated-MOLLI (1$pm$17ms vs. 31$pm$34ms, P<0.01 for in native T1, and 0.1$pm$1.3% vs. 1.9$pm$2.5%, P<0.01 for ECV). The duration of T1 estimation was approximately 2 ms per slice using MyoMapNet. Conclusion: MyoMapNet T1 mapping enables myocardial T1 quantification in 4-5 heartbeats with near-instantaneous map estimation time with similar accuracy and precision as MOLLI. Keywords: Myocardial T1 mapping, MOLLI, T1 reconstruction, Neural network, Deep Learning.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا