Distributed sequential method for analyzing massive data


Abstract in English

To analyse a very large data set containing lengthy variables, we adopt a sequential estimation idea and propose a parallel divide-and-conquer method. We conduct several conventional sequential estimation procedures separately, and properly integrate their results while maintaining the desired statistical properties. Additionally, using a criterion from the statistical experiment design, we adopt an adaptive sample selection, together with an adaptive shrinkage estimation method, to simultaneously accelerate the estimation procedure and identify the effective variables. We confirm the cogency of our methods through theoretical justifications and numerical results derived from synthesized data sets. We then apply the proposed method to three real data sets, including those pertaining to appliance energy use and particulate matter concentration.

Download