Do you want to publish a course? Click here

The discovery of WASP-134b, WASP-134c, WASP-137b, WASP-143b and WASP-146b: three hot Jupiters and a pair of warm Jupiters orbiting Solar-type stars

91   0   0.0 ( 0 )
 Added by David Anderson
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery by WASP of five planets orbiting moderately bright ($V$ = 11.0-12.9) Solar-type stars. WASP-137b, WASP-143b and WASP-146b are typical hot Jupiters in orbits of 3-4 d and with masses in the range 0.68--1.11 $M_{rm Jup}$. WASP-134 is a metal-rich ([Fe/H] = +0.40 $pm$ 0.07]) G4 star orbited by two warm Jupiters: WASP-134b ($M_{rm pl}$ = 1.41 $M_{rm Jup}$; $P = 10.1$ d; $e = 0.15 pm 0.01$; $T_{rm eql}$ = 950 K) and WASP-134c ($M_{rm pl} sin i$ = 0.70 $M_{rm Jup}$; $P = 70.0$ d; $e = 0.17 pm 0.09$; $T_{rm eql}$ = 500 K). From observations of the Rossiter-McLaughlin effect of WASP-134b, we find its orbit to be misaligned with the spin of its star ($lambda = -44 pm 10^circ$). WASP-134 is a rare example of a system with a short-period giant planet and a nearby giant companion. In-situ formation or disc migration seem more likely explanations for such systems than does high-eccentricity migration.



rate research

Read More

We report on four new transiting hot Jupiters discovered by the WASP-South survey. WASP-178b transits a V = 9.9, A1V star with Teff = 9350 +/- 150 K, the second-hottest transit host known. It has a highly bloated radius of 1.81 +/- 0.09 Rjup, in line with the known correlation between high irradiation and large size. With an estimated temperature of 2470 +/- 60 K, the planet is one of the best targets for studying ultra-hot Jupiters that is visible from the Southern hemisphere. The three host stars WASP-184, WASP-185 and WASP-192 are all post-main-sequence G0 stars of ages 4-8 Gyr. The larger stellar radii (1.3-1.7 Msun) mean that the transits are relatively shallow (0.7-0.9%) even though the planets have moderately inflated radii of 1.2-1.3 Rjup. WASP-185b has an eccentric orbit (e = 0.24) and a relatively long orbital period of 9.4 d. A star that is 4.6 arcsec from WASP-185 and 4.4 mag fainter might be physically associated.
We report three new transiting hot-Jupiter planets discovered from the WASP surveys combined with radial velocities from OHP/SOPHIE and Euler/CORALIE and photometry from Euler and TRAPPIST. All three planets are inflated, with radii 1.7-1.8 Rjup. All orbit hot stars, F5-F7, and all three stars have evolved, post-MS radii (1.7-2.2 Rsun). Thus the three planets, with orbits of 1.8-3.9 d, are among the most irradiated planets known. This reinforces the correlation between inflated planets and stellar irradiation.
We present the discovery by the WASP-South transit survey of three new transiting hot Jupiters, WASP-161 b, WASP-163 b and WASP-170 b. Follow-up radial velocities obtained with the Euler/CORALIE spectrograph and high-precision transit light curves obtained with the TRAPPIST-North, TRAPPIST-South, SPECULOOS-South, NITES, and Euler telescopes have enabled us to determine the masses and radii for these transiting exoplanets. WASP-161,b completes an orbit around its $V=11.1$ F6V-type host star in 5.406 days, and has a mass and radius of $2.5pm 0.2$$M_{Jup}$ and $1.14pm 0.06$ $R_{Jup}$ respectively. WASP-163,b has an orbital period of 1.609 days, a mass of $1.9pm0.2$ $M_{Jup}$, and a radius of $1.2pm0.1$ $R_{Jup}$. Its host star is a $V=12.5$ G8-type dwarf. WASP-170,b is on a 2.344 days orbit around a G1V-type star of magnitude $V=12.8$. It has a mass of $1.7pm0.2$ $M_{Jup}$ and a radius of $1.14pm0.09$ $R_{Jup}$. Given their irradiations ($sim10^9$ erg.s$^{-1}$.cm$^{-2}$) and masses, the three new planets sizes are in good agreement with classical structure models of irradiated giant planets.
We report the discovery of two transiting exoplanets from the WASP survey, WASP-150b and WASP-176b. WASP-150b is an eccentric ($e$ = 0.38) hot Jupiter on a 5.6 day orbit around a $V$ = 12.03, F8 main-sequence host. The host star has a mass and radius of 1.4 $rm M_{odot}$ and 1.7 $rm R_{odot}$ respectively. WASP-150b has a mass and radius of 8.5 $rm M_J$ and 1.1 $rm R_J$, leading to a large planetary bulk density of 6.4 $rm rho_J$. WASP-150b is found to be $sim3$ Gyr old, well below its circularisation timescale, supporting the eccentric nature of the planet. WASP-176b is a hot Jupiter planet on a 3.9 day orbit around a $V$ = 12.01, F9 sub-giant host. The host star has a mass and radius of 1.3 $rm M_{odot}$ and 1.9 $rm R_{odot}$. WASP-176b has a mass and radius of 0.86 $rm M_J$ and 1.5 $rm R_J$ respectively, leading to a planetary bulk density of 0.23 $rm rho_J$.
We report the discovery by the WASP transit survey of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. WASP-68 b has a mass of 0.95+-0.03 M_Jup, a radius of 1.24-0.06+0.10 R_Jup, and orbits a V=10.7 G0-type star (1.24+-0.03 M_sun, 1.69-0.06+0.11 R_sun, T_eff=5911+-60 K) with a period of 5.084298+-0.000015 days. Its size is typical of hot Jupiters with similar masses. WASP-73 b is significantly more massive (1.88-0.06+0.07 M_Jup) and slightly larger (1.16-0.08+0.12 R_Jup) than Jupiter. It orbits a V=10.5 F9-type star (1.34-0.04+0.05 M_sun, 2.07-0.08+0.19 R_sun, T_eff=6036+-120 K) every 4.08722+-0.00022 days. Despite its high irradiation (2.3 10^9 erg s^-1 cm^-2), WASP-73 b has a high mean density (1.20-0.30+0.26 rho_Jup) that suggests an enrichment of the planet in heavy elements. WASP-88 b is a 0.56+-0.08 M_Jup planet orbiting a V=11.4 F6-type star (1.45+-0.05 M_sun, 2.08-0.06+0.12 R_sun, T_eff=6431+-130 K) with a period of 4.954000+-0.000019 days. With a radius of 1.70-0.07+0.13 R_Jup, it joins the handful of planets with super-inflated radii. The ranges of ages we determine through stellar evolution modeling are 4.2-8.3 Gyr for WASP-68, 2.7-6.4 Gyr for WASP-73 and 1.8-5.3 Gyr for WASP-88. WASP-73 appears to be a significantly evolved star, close to or already in the subgiant phase. WASP-68 and WASP-88 are less evolved, although in an advanced stage of core H-burning.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا