Do you want to publish a course? Click here

Quicker ADC : Unlocking the hidden potential of Product Quantization with SIMD

49   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. A common approach is to rely on Product Quantization, which allows the storage of large vector databases in memory and efficient distance computations. Yet, implementations of nearest neighbor search with Product Quantization have their performance limited by the many memory accesses they perform. Following this observation, Andre et al. proposed Quick ADC with up to $6times$ faster implementations of $mtimes{}4$ product quantizers (PQ) leveraging specific SIMD instructions. Quicker ADC is a generalization of Quick ADC not limited to $mtimes{}4$ codes and supporting AVX-512, the latest revision of SIMD instruction set. In doing so, Quicker ADC faces the challenge of using efficiently 5,6 and 7-bit shuffles that do not align to computer bytes or words. To this end, we introduce (i) irregular product quantizers combining sub-quantizers of different granularity and (ii) split tables allowing lookup tables larger than registers. We evaluate Quicker ADC with multiple indexes including Inverted Multi-Indexes and IVF HNSW and show that it outperforms the reference optimized implementations (i.e., FAISS and polysemous codes) for numerous configurations. Finally, we release an open-source fork of FAISS enhanced with Quicker ADC at http://github.com/nlescoua/faiss-quickeradc.



rate research

Read More

Virtually all of deep learning literature relies on the assumption of large amounts of available training data. Indeed, even the majority of few-shot learning methods rely on a large set of base classes for pretraining. This assumption, however, does not always hold. For some tasks, annotating a large number of classes can be infeasible, and even collecting the images themselves can be a challenge in some scenarios. In this paper, we study this problem and call it Small Data setting, in contrast to Big Data. To unlock the full potential of small data, we propose to augment the models with annotations for other related tasks, thus increasing their generalization abilities. In particular, we use the richly annotated scene parsing dataset ADE20K to construct our realistic Long-tail Recognition with Diverse Supervision (LRDS) benchmark by splitting the object categories into head and tail based on their distribution. Following the standard few-shot learning protocol, we use the head classes for representation learning and the tail classes for evaluation. Moreover, we further subsample the head categories and images to generate two novel settings which we call Scarce-Class and Scarce-Image, respectively corresponding to the shortage of samples for rare classes and training images. Finally, we analyze the effect of applying various additional supervision sources under the proposed settings. Our experiments demonstrate that densely labeling a small set of images can indeed largely remedy the small data constraints.
Product Quantization (PQ) has long been a mainstream for generating an exponentially large codebook at very low memory/time cost. Despite its success, PQ is still tricky for the decomposition of high-dimensional vector space, and the retraining of model is usually unavoidable when the code length changes. In this work, we propose a deep progressive quantization (DPQ) model, as an alternative to PQ, for large scale image retrieval. DPQ learns the quantization codes sequentially and approximates the original feature space progressively. Therefore, we can train the quantization codes with different code lengths simultaneously. Specifically, we first utilize the label information for guiding the learning of visual features, and then apply several quantization blocks to progressively approach the visual features. Each quantization block is designed to be a layer of a convolutional neural network, and the whole framework can be trained in an end-to-end manner. Experimental results on the benchmark datasets show that our model significantly outperforms the state-of-the-art for image retrieval. Our model is trained once for different code lengths and therefore requires less computation time. Additional ablation study demonstrates the effect of each component of our proposed model. Our code is released at https://github.com/cfm-uestc/DPQ.
68 - Fabien Andre 2017
Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. Because it offers low responses times, Product Quantization (PQ) is a popular solution. PQ compresses high-dimensional vectors into short codes using several sub-quantizers, which enables in-RAM storage of large databases. This allows fast answers to NN queries, without accessing the SSD or HDD. The key feature of PQ is that it can compute distances between short codes and high-dimensional vectors using cache-resident lookup tables. The efficiency of this technique, named Asymmetric Distance Computation (ADC), remains limited because it performs many cache accesses. In this paper, we introduce Quick ADC, a novel technique that achieves a 3 to 6 times speedup over ADC by exploiting Single Instruction Multiple Data (SIMD) units available in current CPUs. Efficiently exploiting SIMD requires algorithmic changes to the ADC procedure. Namely, Quick ADC relies on two key modifications of ADC: (i) the use 4-bit sub-quantizers instead of the standard 8-bit sub-quantizers and (ii) the quantization of floating-point distances. This allows Quick ADC to exceed the performance of state-of-the-art systems, e.g., it achieves a Recall@100 of 0.94 in 3.4 ms on 1 billion SIFT descriptors (128-bit codes).
120 - Yan Feng , Bin Chen , Tao Dai 2020
Deep product quantization network (DPQN) has recently received much attention in fast image retrieval tasks due to its efficiency of encoding high-dimensional visual features especially when dealing with large-scale datasets. Recent studies show that deep neural networks (DNNs) are vulnerable to input with small and maliciously designed perturbations (a.k.a., adversarial examples). This phenomenon raises the concern of security issues for DPQN in the testing/deploying stage as well. However, little effort has been devoted to investigating how adversarial examples affect DPQN. To this end, we propose product quantization adversarial generation (PQ-AG), a simple yet effective method to generate adversarial examples for product quantization based retrieval systems. PQ-AG aims to generate imperceptible adversarial perturbations for query images to form adversarial queries, whose nearest neighbors from a targeted product quantizaiton model are not semantically related to those from the original queries. Extensive experiments show that our PQ-AQ successfully creates adversarial examples to mislead targeted product quantization retrieval models. Besides, we found that our PQ-AG significantly degrades retrieval performance in both white-box and black-box settings.
Recursive marginal quantization (RMQ) allows the construction of optimal discrete grids for approximating solutions to stochastic differential equations in d-dimensions. Product Markovian quantization (PMQ) reduces this problem to d one-dimensional quantization problems by recursively constructing product quantizers, as opposed to a truly optimal quantizer. However, the standard Newton-Raphson method used in the PMQ algorithm suffers from numerical instabilities, inhibiting widespread adoption, especially for use in calibration. By directly specifying the random variable to be quantized at each time step, we show that PMQ, and RMQ in one dimension, can be expressed as standard vector quantization. This reformulation allows the application of the accelerated Lloyds algorithm in an adaptive and robust procedure. Furthermore, in the case of stochastic volatility models, we extend the PMQ algorithm by using higher-order updates for the volatility or variance process. We illustrate the technique for European options, using the Heston model, and more exotic products, using the SABR model.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا