Activity variation driven by flux emergence and transport on Sun-like stars


Abstract in English

In G dwarfs, the surface distribution, coverage and lifetimes of starspots deviate from solar-like patterns as the rotation rate increases. We set up a numerical platform which includes the large-scale rotational and surface flow effects, aiming to simulate evolving surface patterns over an activity cycle for up to 8 times the solar rotation and flux emergence rates. At the base of the convection zone, we assume a solar projected butterfly diagram. We then follow the rotationally distorted trajectories of rising thin flux tubes to obtain latitudes and tilt angles. Using them as source distributions, we run a surface flux transport model with solar parameters. Our model predicts surface distributions of the signed radial fields and the starspots that qualitatively agree with observations.

Download