Active control of spin-wave dynamics is demonstrated using broadband ferromagnetic resonance in two-dimensional Ni80Fe20 antidot lattices arranged in hexagonal lattice with fixed lattice constant but varying antidot diameter. A strong modification in the spin-wave spectra is obtained with the variation in the antidot diameter as well as with the strength and orientation of the bias magnetic field. A broad band of modes is observed for the lattice with higher antidot diameter which decreases systematically as the antidot diameter is reduced. A crossover between the higher frequency branches is achieved in lattices with higher antidot diameter. In addition, the spin-wave modes in all lattices show a strong six-fold anisotropic behaviour due to the variation of internal field distribution as a function of the bias-field orientation. A mode hopping-like behavior is observed in the angular dispersions of spin-wave spectra for samples having intermediate hole diameters. Micromagnetic simulations qualitatively reproduce the experimentally observed spin-wave modes and the simulated mode profiles reveal the presence of extended and quantized standing spin-wave modes in these lattices. These observations are significant for large tunability and anisotropic propagation of spin waves in GHz frequency magnetic devices.
We study spin-wave transport in a microstructured Ni81Fe19 waveguide exhibiting broken translational symmetry. We observe the conversion of a beam profile composed of symmetric spin-wave width modes with odd numbers of antinodes n=1,3,... into a mixed set of symmetric and asymmetric modes. Due to the spatial homogeneity of the exciting field along the used microstrip antenna, quantized spin-wave modes with an even number n of antinodes across the stripes width cannot be directly excited. We show that a break in translational symmetry may result in a partial conversion of even spin-wave waveguide modes
Strongly-interacting nanomagnetic arrays are finding increasing use as model host systems for reconfigurable magnonics. The strong inter-element coupling allows for stark spectral differences across a broad microstate space due to shifts in the dipolar field landscape. While these systems have yielded impressive initial results, developing rapid, scaleable means to access abroad range of spectrally-distinct microstates is an open research problem.We present a scheme whereby square artificial spin ice is modified by widening a staircase subset of bars relative to the rest of the array, allowing preparation of any ordered vertex state via simple global-field protocols. Available microstates range from the system ground-state to high-energy monopole states, with rich and distinct microstate-specific magnon spectra observed. Microstate-dependent mode-hybridisation and anticrossings are observed at both remanence and in-field with dynamic coupling strength tunable via microstate-selection. Experimental coupling strengths are found up to g / 2$pi$ = 0.15 GHz. Microstate control allows fine mode-frequency shifting, gap creation and closing, and active mode number selection.
The breathing mode of a skyrmion, corresponding to coupled oscillations of its size and chirality angle is studied numerically for a conservative classical-spin system on a $500times500$ lattice. The dependence of the oscillation frequency on the magnetic field is computed. It is linear at small fields, reaches maximum on increasing the field, then sharply tends to zero as the field approaches the threshold above which the skyrmion loses stability and collapses. Physically transparent analytical model is developed that explains the results qualitatively and provides the field dependence of the oscillation frequency that is close to the one computed numerically. It is shown that a large-amplitude breathing motion in which the skyrmion chirality angle $gamma$ is rotating in one direction is strongly damped and quickly ends by the skyrmion collapse. To the contrary, smaller-amplitude breathing motion in which $gamma$ oscillates is undamped.
We propose and analyze a novel flopping-mode mechanism for electric dipole spin resonance based on the delocalization of a single electron across a double quantum dot confinement potential. Delocalization of the charge maximizes the electronic dipole moment compared to the conventional single dot spin resonance configuration. We present a theoretical investigation of the flopping-mode spin qubit properties through the crossover from the double to the single dot configuration by calculating effective spin Rabi frequencies and single-qubit gate fidelities. The flopping-mode regime optimizes the artificial spin-orbit effect generated by an external micromagnet and draws on the existence of an externally controllable sweet spot, where the coupling of the qubit to charge noise is highly suppressed. We further analyze the sweet spot behavior in the presence of a longitudinal magnetic field gradient, which gives rise to a second order sweet spot with reduced sensitivity to charge fluctuations.
Recent experimental work has demonstrated optical control of spin wave emission by tuning the shape of the optical pulse (Satoh et al. Nature Photonics, 6, 662 (2012)). We reproduce these results and extend the scope of the control by investigating nonlinear effects for large amplitude excitations. We observe an accumulation of spin wave power at the center of the initial excitation combined with short-wavelength spin waves. These kind of nonlinear effects have not been observed in earlier work on nonlinearities of spin waves. Our observations pave the way for the manipulation of magnetic structures at a smaller scale than the beam focus, for instance in devices with all-optical control of magnetism.
Samiran Choudhury
,Sudip Majumder
,Saswati Barman
.
(2018)
.
"Active Control of Mode Crossover and Mode Hopping of Spin Waves in a Ferromagnetic Antidot Lattice"
.
Anjan Barman
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا