No Arabic abstract
The difference between observed cross sections of the evaporation residues (ER) of the $^{34}$S+$^{208}$Pb and $^{36}$S+$^{206}$Pb reactions formed in the 2n and 3n channels has been explained by two reasons related with the entrance channel characteristics of these reactions. The first reason is that the capture cross section of the latter reaction is larger than the one of the $^{34}$S+$^{208}$Pb reaction since the nucleus-nucleus potential is more attractive in the $^{36}$S+$^{206}$Pb reaction due to two more neutrons in isotope $^{36}$S. The second reason is the difference in the heights of the intrinsic fusion barrier $B^*_{rm fus}$ appearing on the fusion trajectory by nucleon transfer between nuclei of the DNS formed after the capture. The value of $B^*_{rm fus}$ calculated for the $^{34}$S+$^{208}$Pb reaction is higher than the one obtained for the $^{36}$S+$^{206}$Pb reaction. This fact has been caused by the difference between the $N/Z$-ratios in the light fragments of the DNS formed during the capture in these reactions. The $N/Z$-ratio has been found by solution of the transport master equations for the proton and neutron distributions between fragments of the DNS formed at capture with the different initial neutron numbers $N=18$ and $N=20$ for the reactions with the $^{34}$S and $^{36}$S, respectively.
We present and discuss numerical predictions for the neutron density distribution of $^{208}$Pb using various non-relativistic and relativistic mean-field models for the nuclear structure. Our results are compared with the very recent pion photoproduction data from Mainz. The parity-violating asymmetry parameter for elastic electron scattering at the kinematics of the PREX experiment at JLab and the neutron skin thickness are compared with the available data. We consider also the dependence between the neutron skin and the parameters of the expansion of the symmetry energy.
The reaction cross section $sigma_R$ is useful to determine the neutron radius $R_n$ as well as the matter radius $R_m$. The chiral (Kyushu) $g$-matrix folding model for $^{12}$C scattering on $^{9}$Be, $^{12}$C, $^{27}$Al targets was tested in the incident energy range of $30 lsim E_{rm in} lsim 400 $ MeV, and it is found that the model reliably reproduces the $sigma_R$ in $30 lsim E_{rm in} lsim 100 $ MeV and $250 lsim E_{rm in} lsim 400$ MeV. item[Aim] We determine $R_n$ and the neutron skin thickness $R_{rm skin}$ of ${}^{208}{rm Pb}$ by using high-quality $sigma_R$ data for the $p+{}^{208}{rm Pb}$ scattering in $30 leq E_{rm in} leq 100$ MeV. The theoretical model is the Kyushu $g$-matrix folding model with the densities calculated with Gongny-D1S HFB (GHFB) with the angular momentum projection (AMP). item[Results] The Kyushu $g$-matrix folding model with the GHFB+AMP densities underestimates $sigma_{rm R}$ in $30 leq E_{rm in} leq 100$~MeV only by a factor of 0.97. Since the proton radius $R_p$ calculated with GHFB+AMP agrees with the precise experimental data of 5.444 fm, the small deviation of the theoretical result from the data on $sigma_R$ allows us to scale the GHFB+AMP neutron density so as to reproduce the $sigma_R$ data. In $E_{rm in}$ = 30--100 MeV, the experimental $sigma_R$ data can be reproduced by assuming the neutron radius of ${}^{208}{rm Pb}$ as $R_n$ = $5.722 pm 0.035$ fm. item[Conclusion] The present result $R_{rm skin}$ = $0.278 pm 0.035$ fm is in good agreement with the recent PREX-II result of $r_{rm skin}$ = $0.283pm 0.071$ fm.
We briefly review the predictions of the thermal model for hadron production in comparison to latest data from RHIC and extrapolate the calculations to LHC energy. Our main emphasis is to confront the model predictions with the recently released data from ALICE at the LHC. This comparison reveals an apparent anomaly for protons and anti-protons which we discuss briefly. We also demonstrate that our statistical hadronization predictions for J/$psi$ production agree very well with the most recent LHC data, lending support to the picture in which there is complete charmonium melting in the quark-gluon plasma (QGP) followed by statistical generation of J/$psi$ mesons at the phase boundary.
This paper presents the nuclide cross sections and the longitudinal velocity distributions of residues produced in the reactions of 136Xe and 124Xe at 1 A GeV in a lead target, measured at the high-resolution magnetic spectrometer, the Fragment Separator (FRS) of GSI. The data cover a broad range of isotopes of the elements between Z = 3 and Z = 56 for 136Xe and between Z = 5 and Z = 55 for 124Xe, reaching down to cross sections of a few microbarns. The velocity distributions exhibit a Gaussian shape for masses above A = 20, while more complex behaviour is observed for lighter masses. The isotopic distributions for both reactions preserve a memory on the projectile N/Z ratio over the whole residue mass range.
114 cross sections for nuclide production in a 1.0 GeV proton-irradiated thin 208Pb target have been measured by the direct gamma spectrometry method using a high-resolution Ge detector. The gamma spectra were processed by the GENIE-2000 code. The ITEP-developed SIGMA code was used together with the PCNUDAT nuclear decay database to identify the gamma lines and to determine the cross sections. The 27Al(p,x)22Na reaction was used to monitor the proton flux. Results of a feasibility study of the auxiliary 27Al(p,x)24Na and 27Al(p,x)7Be monitor reactions in the 0.07-2.6 GeV proton-energy range are presented as well. Most of the experimental data have been analyzed by the LAHET (with ISABEL and Bertini options), CEM95, CEM2k, INUCL, CASCADE, CASCADE/INPE, and YIELDX codes that simulate hadron-nucleus interactions.