We show explicitly that the nonminimal coupling between the scalar field and the Ricci scalar in 2D dilaton gravity can be recast in the form of kinetic gravity braiding (KGB). This is as it should be, because KGB is the 2D version of the Horndeski theory. We also determine all the static solutions with a linearly time-dependent scalar configuration in the shift-symmetric KGB theories in 2D.
We construct a two-dimensional action that is an extension of spherically symmetric Einstein-Lanczos-Lovelock gravity. The action contains arbitrary functions of the areal radius and the norm squared of its gradient, but the field equations are second order and obey Birkhoffs theorem. In complete analogy with spherically symmetric Einstein-Lanczos-Lovelock gravity, the field equations admit the generalized Misner-Sharp mass as the first integral that determines the form of the vacuum solution. The arbitrary functions in the action allow for vacuum solutions that describe a larger class of interesting nonsingular black-hole spacetimes than previously available.
We investigate Euclidean wormholes in Gauss-Bonnet-dilaton gravity to explain the creation of the universe from nothing. We considered two types of dilaton couplings (i.e., the string-inspired model and the Gaussian model) and we obtained qualitatively similar results. There can exist Euclidean wormholes that explain the possible origin of our universe, where the dilaton field is located over the barrier of dilaton potential. This solution can exist even if dilaton potential does not satisfy slow-roll conditions. In addition, the probability is higher than that of the Hawking-Moss instanton with the same final condition. Therefore, Euclidean wormholes in Gauss-Bonnet-dilaton gravity are a possible and probable scenario, which explains the origin of our universe.
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curvature-couplings the resulting scalarized black hole solutions are nonlinearly stable. For such small couplings, we show that an elliptic region forms inside these EdGB black hole spacetimes (prior to any curvature singularity), and give evidence that this region remains censored from asymptotic view. However, for coupling values superextremal relative to a given black hole mass, an elliptic region forms exterior to the horizon, implying the exterior Cauchy problem is ill-posed in this regime.
In order to perform model-dependent tests of general relativity with gravitational wave observations, we must have access to numerical relativity binary black hole waveforms in theories beyond general relativity (GR). In this study, we focus on order-reduced Einstein dilaton Gauss-Bonnet gravity (EDGB), a higher curvature beyond-GR theory with motivations in string theory. The stability of single, rotating black holes in EDGB is unknown, but is a necessary condition for being able to simulate binary black hole systems (especially the early-inspiral and late ringdown stages) in EDGB. We thus investigate the stability of rotating black holes in order-reduced EDGB. We evolve the leading-order EDGB scalar field and EDGB spacetime metric deformation on a rotating black hole background, for a variety of spins. We find that the EDGB metric deformation exhibits linear growth, but that this level of growth exponentially converges to zero with numerical resolution. Thus, we conclude that rotating black holes in EDGB are numerically stable to leading-order, thus satisfying our necessary condition for performing binary black hole simulations in EDGB.
We present a family of extensions of spherically symmetric Einstein-Lanczos-Lovelock gravity. The field equations are second order and obey a generalized Birkhoffs theorem. The Hamiltonian constraint can be written in terms of a generalized Misner-Sharp mass function that determines the form of the vacuum solution. The action can be designed to yield interesting non-singular black-hole spacetimes as the unique vacuum solutions, including the Hayward black hole as well as a completely new one. The new theories therefore provide a consistent starting point for studying the formation and evaporation of non-singular black holes as a possible resolution to the black hole information loss conundrum.