Do you want to publish a course? Click here

Tracing the Quenching History in Galaxy Clusters in the EAGLE Simulation

86   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the EAGLE hydrodynamical simulation to trace the quenching history of galaxies in its 10 most massive clusters. We use two criteria to identify moments when galaxies suffer significant changes in their star formation activity: {it i)} the instantaneous star formation rate (SFR) strongest drop, $Gamma_{rm SFR}^{rm SD}$, and {it ii)} a quenching criterion based on a minimum threshold for the specific SFR of $lesssim$ 10$^{-11}rm yr^{-1}$. We find that a large fraction of galaxies ($gtrsim 60%$) suffer their $Gamma_{rm SFR}^{rm SD}$ outside the clusters R$_{200}$. This ``pre-processed population is dominated by galaxies that are either low mass and centrals or inhabit low mass hosts ($10^{10.5}$M$_{odot} lesssim$ M$_{rm host} lesssim 10^{11.0}$M$_{odot}$). The host mass distribution is bimodal, and galaxies that suffered their $Gamma_{rm SFR}^{rm SD}$ in massive hosts ($10^{13.5}rm M_{odot} lesssim M_{host} lesssim 10^{14.0}M_{odot}$) are mainly processed within the clusters. Pre-processing mainly limits the total stellar mass with which galaxies arrive in the clusters. Regarding quenching, galaxies preferentially reach this state in high-mass halos ($10^{13.5}rm M_{odot} lesssim M_{host} lesssim 10^{14.5}M_{odot}$). The small fraction of galaxies that reach the cluster already quenched has also been pre-processed, linking both criteria as different stages in the quenching process of those galaxies. For the $z=0$ satellite populations, we find a sharp rise in the fraction of quenched satellites at the time of first infall, highlighting the role played by the dense cluster environment. Interestingly, the fraction of pre-quenched galaxies rises with final cluster mass. This is a direct consequence of the hierarchical cosmological model used in these simulations.



rate research

Read More

127 - Maarten Baes 2019
The cosmic spectral energy distribution (CSED) is the total emissivity as a function of wavelength of galaxies in a given cosmic volume. We compare the observed CSED from the UV to the submm to that computed from the EAGLE cosmological hydrodynamical simulation, post-processed with stellar population synthesis models and including dust radiative transfer using the SKIRT code. The agreement with the data is better than 0.15 dex over the entire wavelength range at redshift $z=0$, except at UV wavelengths where the EAGLE model overestimates the observed CSED by up to a factor 2. Global properties of the CSED as inferred from CIGALE fits, such as the stellar mass density, mean star formation density, and mean dust-to-stellar-mass ratio, agree to within better than 20 per cent. At higher redshift, EAGLE increasingly underestimates the CSED at optical-NIR wavelengths with the FIR/submm emissivity underestimated by more than a factor of 5 by redshift $z=1$. We believe that these differences are due to a combination of incompleteness of the EAGLE-SKIRT database, the small simulation volume and the consequent lack of luminous galaxies, and our lack of knowledge on the evolution of the characteristics of the interstellar dust in galaxies. The impressive agreement between the simulated and observed CSED at lower $z$ confirms that the combination of EAGLE and SKIRT dust processing yields a fairly realistic representation of the local Universe.
Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we use the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass-size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy-halo connection it implies. We find the EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.
Despite the insights gained in the last few years, our knowledge about the formation and evolution scenario for the spheroid-dominated galaxies is still incomplete. New and more powerful cosmological simulations have been developed that together with more precise observations open the possibility of more detailed study of the formation of early-type galaxies (ETGs). The aim of this work is to analyse the assembly histories of ETGs in a $Lambda$-CDM cosmology, focussing on the archeological approach given by the mass-growth histories.We inspected a sample of dispersion-dominated galaxies selected from the largest volume simulation of the EAGLE project. This simulation includes a variety of physical processes such as radiative cooling, star formation (SF), metal enrichment, and stellar and active galactic nucleus (AGN) feedback. The selected sample comprised 508 spheroid-dominated galaxies classified according to their dynamical properties. Their surface brightness profile, the fundamental relations, kinematic properties, and stellar-mass growth histories are estimated and analysed. The findings are confronted with recent observations.The simulated ETGs are found to globally reproduce the fundamental relations of ellipticals. All of them have an inner disc component where residual younger stellar populations (SPs) are detected. A fraction of this inner-disc correlates with bulge-to-total ratio. We find a relation between kinematics and shape that implies that dispersion-dominated galaxies with low $V/sigma_L$ (where $V$ is the average rotational velocity and $sigma_L$ the one dimensional velocity dispersion) tend to have ellipticity smaller than $sim 0.5$ and are dominated by old stars. Abridged
175 - Wenxiao Xu , Qi Guo , Haonan Zheng 2020
We investigate the dependence of the galaxy properties on cosmic web environments using the most up-to-date hydrodynamic simulation: Evolution and Assembly of Galaxies and their Environments (EAGLE). The baryon fractions in haloes and the amplitudes of the galaxy luminosity function decrease going from knots to filaments to sheets to voids. Interestingly, the value of L$^*$ varies dramatically in different cosmic web environments. At z = 0, we find a characteristic halo mass of $10^{12} h^{-1}rm M_{odot}$, below which the stellar-to-halo mass ratio is higher in knots while above which it reverses. This particular halo mass corresponds to a characteristic stellar mass of $1.8times 10^{10} h^{-1}rm M_{odot}$. Below the characteristic stellar mass central galaxies have redder colors, lower sSFRs and higher metallicities in knots than those in filaments, sheets and voids, while above this characteristic stellar mass, the cosmic web environmental dependences either reverse or vanish. Such dependences can be attributed to the fact that the active galaxy fraction decreases along voids, sheets, filaments and knots. The cosmic web dependences get weaker towards higher redshifts for most of the explored galaxy properties and scaling relations, except for the gas metallicity vs. stellar mass relation.
We study the formation of planes of dwarf galaxies around Milky Way (MW)-mass haloes in the EAGLE galaxy formation simulation. We focus on satellite systems similar to the one in the MW: spatially thin or with a large fraction of members orbiting in the same plane. To characterise the latter, we introduce a robust method to identify the subsets of satellites that have the most co-planar orbits. Out of the 11 MW classical dwarf satellites, 8 have highly clustered orbital planes whose poles are contained within a $22^circ$ opening angle centred around $(l,b)=(182^circ,-2^circ)$. This configuration stands out when compared to both isotropic and typical $Lambda$CDM satellite distributions. Purely flattened satellite systems are short-lived chance associations and persist for less than $1~rm{Gyr}$. In contrast, satellite subsets that share roughly the same orbital plane are longer lived, with half of the MW-like systems being at least $4~rm{Gyrs}$ old. On average, satellite systems were flatter in the past, with a minimum in their minor-to-major axes ratio about $9~rm{Gyrs}$ ago, which is the typical infall time of the classical satellites. MW-like satellite distributions have on average always been flatter than the overall population of satellites in MW-mass haloes and, in particular, they correspond to systems with a high degree of anisotropic accretion of satellites. We also show that torques induced by the aspherical mass distribution of the host halo channel some satellite orbits into the hosts equatorial plane, enhancing the fraction of satellites with co-planar orbits. In fact, the orbital poles of co-planar satellites are tightly aligned with the minor axis of the host halo.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا