No Arabic abstract
Few-mode models have been a cornerstone of the theoretical work in quantum optics, with the famous single-mode Jaynes-Cummings model being only the most prominent example. In this work, we develop ab initio few-mode theory, a framework connecting few-mode system-bath models to ab initio theory. We first present a method to derive exact few-mode Hamiltonians for non-interacting quantum potential scattering problems and demonstrate how to rigorously reconstruct the scattering matrix from such few-mode Hamiltonians. We show that upon inclusion of a background scattering contribution, an ab initio version of the well known input-output formalism is equivalent to standard scattering theory. On the basis of these exact results for non-interacting systems, we construct an effective few-mode expansion scheme for interacting theories, which allows to extract the relevant degrees of freedom from a continuum in an open quantum system. As a whole, our results demonstrate that few-mode as well as input-output models can be extended to a general class of problems, and open up the associated toolbox to be applied to various platforms and extreme regimes. We outline differences of the ab initio results to standard model assumptions, which may lead to qualitatively different effects in certain regimes. The formalism is exemplified in various simple physical scenarios. In the process we provide proof-of-concept of the method, demonstrate important properties of the expansion scheme, and exemplify new features in extreme regimes.
We develop a quantum theory of atomic Rayleigh scattering. Scattering is considered as a relaxation of incident photons from a selected mode of free space to the reservoir of the other free space modes. Additional excitations of the reservoir states which appear are treated as scattered light. We show that an entangled state of the excited atom and the incident photon is formed during the scattering. Due to entanglement, a photon is never completely absorbed by the atom. We show that even if the selected mode frequency is incommensurable with any atomic transition frequency, the scattered light spectrum has a maximum at the frequency of the selected mode. The linewidth of scattered light is much smaller than that of the spontaneous emission of a single atom, therefore, the process can be considered as elastic. The developed theory does not use the phenomenological concept of virtual level.
A new framework for $A(d,p)B$ reactions is introduced by merging the microscopic approach to computing the properties of the nucleon-target systems and the three-body $n+p+A$ reaction formalism, thus providing a consistent link between the reaction cross sections and the underlying microscopic structure. In this first step toward a full microscopic description, we focus on the inclusion of the neutron-target microscopic properties. The properties of the neutron-target subsystem are encapsulated in the Greens function which is computed with the Coupled Cluster theory using a chiral nucleon-nucleon and three-nucleon interactions. Subsequently, this many-body information is introduced in the few-body Greens Function Transfer approach to $(d,p)$ reactions. Our benchmarks on stable targets $^{40,48}$Ca show an excellent agreement with the data. We then proceed to make specific predictions for $(d,p)$ on neutron rich $^{52,54}$Ca isotopes. These predictions are directly relevant to testing the new magic numbers $N=32,34$ and are expected to be feasible in the first campaign of the projected FRIB facility.
We study the scattering of photons by a two-level system ultrastrongly coupled to a one-dimensional waveguide. Using a combination of the polaron transformation with scattering theory we can compute the one-photon scattering properties of the qubit for a broad range of coupling strengths, estimating resonance frequencies, lineshapes and linewidths. We validate numerically and analytically the accuracy of this technique up to $alpha=0.3$, close to the Toulouse point $alpha=1/2$, where inelastic scattering becomes relevant. These methods model recent experiments with superconducting circuits [P. Forn-D{i}az et al., Nat. Phys. (2016)].
The concept of machine learning configuration interaction (MLCI) [J. Chem. Theory Comput. 2018, 14, 5739], where an artificial neural network (ANN) learns on the fly to select important configurations, is further developed so that accurate ab initio potential energy curves can be efficiently calculated. This development includes employing the artificial neural network also as a hash function for the efficient deletion of duplicates on the fly so that the singles and doubles space does not need to be stored and this barrier to scalability is removed. In addition configuration state functions are introduced into the approach so that pure spin states are guaranteed, and the transferability of data between geometries is exploited. This improved approach is demonstrated on potential energy curves for the nitrogen molecule, water, and carbon monoxide. The results are compared with full configuration interaction values, when available, and different transfer protocols are investigated. It is shown that, for all of the considered systems, accurate potential energy curves can now be efficiently computed with MLCI. For the potential curves of N$_{2}$ and CO, MLCI can achieve lower errors than stochastically selecting configurations while also using substantially less processor hours.
The availability of efficient photon sources with specific properties is important for quantum-technological applications. However, the realization of such photon sources is often challenging and hence alternative perspectives that suggest new means to enhance desired properties while suppressing detrimental processes are valuable. In this work we highlight that ab-initio simulations of coupled light-matter systems can provide such new avenues. We show for a simple model of a quantum ring that by treating light and matter on equal footing we can create and enhance novel pathways for down-conversion processes. By changing the matter subsystem as well as the photonic environment in experimentally feasible ways, we can engineer hybrid light-matter states that enhance at the same time the efficiency of the down-conversion process and the non-classicality of the created photons. Furthermore we show that this also leads to a faster down-conversion, potentially avoiding detrimental decoherence effects.