Do you want to publish a course? Click here

Natural Seesaw and Leptogenesis from Hybrid of High-Scale Type I and TeV-Scale Inverse

112   0   0.0 ( 0 )
 Added by Peizhi Du
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We develop an extension of the basic inverse seesaw model which addresses simultaneously two of its drawbacks, namely, the lack of explanation of the tiny Majorana mass term $mu$ for the TeV-scale singlet fermions and the difficulty in achieving successful leptogenesis. Firstly, we investigate systematically leptogenesis within the inverse (and the related linear) seesaw models and show that a successful scenario requires either small Yukawa couplings, implying loss of experimental signals, and/or quasi-degeneracy among singlets mass of different generations, suggesting extra structure must be invoked. Then we move to the analysis of our new framework, which we refer to as hybrid seesaw. This combines the TeV degrees of freedom of the inverse seesaw with those of a high-scale ($M_Ngg$ TeV) seesaw module in such a way as to retain the main features of both pictures: naturally small neutrino masses, successful leptogenesis, and accessible experimental signatures. We show how the required structure can arise from a more fundamental theory with a gauge symmetry or from warped extra dimensions/composite Higgs. We provide a detailed derivation of all the analytical formulae necessary to analyze leptogenesis in this new framework, and discuss the entire gamut of possibilities our scenario encompasses: including scenarios with singlet masses in the enlarged range $M_N sim 10^6 - 10^{16}$ GeV. The idea of hybrid seesaw was proposed by us in arXiv:1804.06847; here, we substantially elaborate upon and extend earlier results.



rate research

Read More

The appealing feature of inverse seesaw models is that the Standard Model (SM) neutrino mass emerges from the exchange of TeV scale singlets with sizable Yukawa couplings, which can be tested at colliders. However, the tiny Majorana mass splitting between TeV singlets, introduced to accommodate small neutrino masses, is left unexplained. Moreover, we argue that these models suffer from a structural limitation that prevents a successful leptogenesis if one insists on having unsuppressed Yukawa couplings and TeV scale singlets. In this work we propose a hybrid seesaw model, where we replace the mass splitting with a coupling to a high scale seesaw module including a TeV scalar. We show that this structure achieves the goal of filling both the above gaps with couplings of order unity. The necessary structure automatically arises embedding the seesaw mechanism in composite Higgs models, but may also be enforced by new gauge symmetries in a weakly-coupled theory. Our hybrid seesaw models have distinguishing features compared to the standard high scale type-I seesaw and inverse seesaw. Firstly, they have much richer phenomenology. Indeed, they generally predict new TeV scale physics (including scalars) potentially accessible at present and future colliders, whereas weakly-coupl
We show that MSSM with three right handed neutrinos incorporating a renormalizable Type-I seesaw superpotential and no-scale SURGA K{a}hler potential can lead to a Starobinsky kind of inflation potential along a flat direction associated with gauge invariant combination of Higgs, slepton and right handed sneutrino superfields. The inflation conditions put constraints on the Dirac Yukawa coupling and the Majorana masses required for the neutrino masses and also demands the tuning among the parameters. The scale of inflation is set by the mass of the heaviest right handed neutrino. We also fit the neutrino data from oscillation experiments at low scale using the effective RGEs of MSSM with three right handed neutrinos.
We consider seesaw type-I models including at least one (mostly-)sterile neutrino with mass at the eV scale. Three distinct situations are found, where the presence of light extra neutrinos is naturally justified by an approximately conserved lepton number symmetry. To analyse these scenarios consistently, it is crucial to employ an exact parametrisation of the full mixing matrix. We provide additional exact results, including generalise
We discuss the issue of vacuum stability of standard model by embedding it within the TeV scale left-right universal seesaw model (called SLRM in the text). This model has only two coupling parameters $(lambda_1, lambda_2)$ in the Higgs potential and only two physical neutral Higgs bosons $(h, H)$. We explore the range of values for $(lambda_1, lambda_2)$ for which the light Higgs boson mass $M_h=126$ GeV and the vacuum is stable for all values of the Higgs fields. Combining with the further requirement that the scalar self couplings remain perturbative till typical GUT scales of order $10^{16}$ GeV, we find (i) an upper and lower limit on the second Higgs $(H)$ mass to be within the range: $0.4 leq frac{M_H}{v_R}leq 0.7$, where the $v_R$ is the parity breaking scale and (ii) that the heavy vector-like top, bottom and $tau$ partner fermions ($P_3, N_3, E_3$) mass have an upper bound $M_{P_3, N_3, E_3} leq v_R$. We discuss some phenomenological aspects of the model pertaining to LHC.
No-scale supergravity provides a successful framework for Starobinsky-like inflation models. Two classes of models can be distinguished depending on the identification of the inflaton with the volume modulus, $T$ (C-models), or a matter-like field, $phi$ (WZ-models). When supersymmetry is broken, the inflationary potential may be perturbed, placing restrictions on the form and scale of the supersymmetry breaking sector. We consider both types of inflationary models in the context of high-scale supersymmetry. We further distinguish between models in which the gravitino mass is below and above the inflationary scale. We examine the mass spectra of the inflationary sector. We also consider in detail mechanisms for leptogenesis for each model when a right-handed neutrino sector, used in the seesaw mechanism to generate neutrino masses, is employed. In the case of C-models, reheating occurs via inflaton decay to two Higgs bosons. However, there is a direct decay channel to the lightest right-handed neutrino which leads to non-thermal leptogenesis. In the case of WZ-models, in order to achieve reheating, we associate the matter-like inflaton with one of the right-handed sneutrinos whose decay to the lightest right handed neutrino simultaneously reheats the Universe and generates the baryon asymmetry through leptogenesis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا