Do you want to publish a course? Click here

Is there an analytic theory of automorphic functions for complex algebraic curves?

75   0   0.0 ( 0 )
 Added by Edward Frenkel
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The geometric Langlands correspondence for complex algebraic curves differs from the original Langlands correspondence for number fields in that it is formulated in terms of sheaves rather than functions (in the intermediate case of curves over finite fields, both formulations are possible). In a recent preprint, Robert Langlands made a proposal for developing an analytic theory of automorphic forms on the moduli space of $G$-bundles on a complex algebraic curve. Langlands envisioned these forms as eigenfunctions of some analogues of Hecke operators. In these notes I show that if $G$ is an abelian group then there are well-defined Hecke operators, and I give a complete description of their eigenfunctions and eigenvalues. For non-abelian $G$, Hecke operators involve integration, which presents some difficulties. However, there is an alternative approach to developing an analytic theory of automorphic forms, based on the existence of a large commutative algebra of global differential operators acting on half-densities on the moduli stack of $G$-bundles. This approach (which implements some ideas of Joerg Teschner) is outlined here, as a preview of a joint work with Pavel Etingof and David Kazhdan.



rate research

Read More

98 - A. A. Voronov 1992
These are notes of a talk to the International Conference on Algebra in honor of A. I. Maltsev, Novosibirsk, USSR, 1989 (to appear in Contemporary Mathematics). The concept of a divisor with complex coefficients on an algebraic curve is introduced. We consider families of complex divisors, or, equivalently, families of invertible sheaves and define Arakelov-type metrics on some invertible sheaves produced from them on the base. We apply this technique to obtain a formula for the measure on the moduli space that gives tachyon correlators in string theory.
We construct a global geometric model for complex analytic equivariant elliptic cohomology for all compact Lie groups. Cocycles are specified by functions on the space of fields of the two-dimensional sigma model with background gauge fields and $mathcal{N} = (0, 1)$ supersymmetry. We also consider a theory of free fermions valued in a representation whose partition function is a section of a determinant line bundle. We identify this section with a cocycle representative of the (twisted) equivariant elliptic Euler class of the representation. Finally, we show that the moduli stack of $U(1)$-gauge fields carries a multiplication compatible with the complex analytic group structure on the universal (dual) elliptic curve, with the Euler class providing a choice of coordinate. This provides a physical manifestation of the elliptic group law central to the homotopy-theoretic construction of elliptic cohomology.
160 - Christoph Lienau 2010
For a real linear algebraic group G let A(G) be the algebra of analytic vectors for the left regular representation of G on the space of superexponentially decreasing functions. We present an explicit Dirac sequence in A(G). Since A(G) acts on E for every Frechet-representation (pi,E) of moderate growth, this yields an elementary proof of a result of Nelson that the space of analytic vectors is dense in E.
We give a cohomological interpretation of both the Kac polynomial and the refined Donaldson-Thomas- invariants of quivers. This interpretation yields a proof of a conjecture of Kac from 1982 and gives a new perspective on recent work of Kontsevich-Soibelman. This is achieved by computing, via an arithmetic Fourier transform, the dimensions of the isoytpical components of the cohomology of associated Nakajima quiver varieties under the action of a Weyl group. The generating function of the corresponding Poincare polynomials is an extension of Huas formula for Kac polynomials of quivers involving Hall-Littlewood symmetric functions. The resulting formulae contain a wide range of information on the geometry of the quiver varieties.
We show that Fourier coefficients of automorphic forms attached to minimal or next-to-minimal automorphic representations of ${mathrm{SL}}_n(mathbb{A})$ are completely determined by certain highly degenerate Whittaker coefficients. We give an explicit formula for the Fourier expansion, analogously to the Piatetski-Shapiro-Shalika formula. In addition, we derive expressions for Fourier coefficients associated to all maximal parabolic subgroups. These results have potential applications for scattering amplitudes in string theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا