Do you want to publish a course? Click here

Recent results from the MAJORANA DEMONSTRATOR

79   0   0.0 ( 0 )
 Added by Jordan Myslik
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decay in $^{76}$Ge and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two modules of natural and $^{76}$Ge-enriched germanium detectors totalling 44.1 kg, operating at the 4850 level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Commissioning of the experiment began in June 2015, followed by data production with the full detector array in August 2016. The ultra-low background and record energy resolution achieved by the MAJORANA DEMONSTRATOR enable a sensitive neutrinoless double-beta decay search, as well as additional searches for physics beyond the Standard Model. I will discuss the design elements that enable these searches, along with the latest results, focusing on the neutrinoless double-beta decay search. I will also discuss the current status and the future plans of the MAJORANA DEMONSTRATOR, as well as the plans for a future tonne-scale $^{76}$Ge experiment.



rate research

Read More

The MAJORANA Collaboration has assembled an array of high purity Ge detectors to search for neutrinoless double-beta decay in $^{76}$Ge with the goal of establishing the required background and scalability of a Ge-based next-generation ton-scale experiment. The MAJORANA DEMONSTRATOR consists of 44 kg of high-purity Ge (HPGe) detectors (30 kg enriched in $^{76}$Ge) with a low-noise p-type point contact (PPC) geometry. The detectors are split between two modules which are contained in a single lead and high-purity copper shield at the Sanford Underground Research Facility in Lead, South Dakota. Following a commissioning run that started in June 2015, the full detector array has been acquiring data since August 2016. We will discuss the status of the MAJORANA DEMONSTRATOR and initial results from the first physics run; including current background estimates, exotic low-energy physics searches, projections on the physics reach of the DEMONSTRATOR, and implications for a ton-scale Ge-based neutrinoless double-beta decay search.
Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The MAJORANA Collaboration assembled an array of high purity Ge detectors to search for neutrinoless double-beta decay in Ge-76. The MAJORANA DEMONSTRATOR is comprised of 44.1 kg (29.7 kg enriched in Ge-76) of Ge detectors divided between two modules contained in a low-background shield at the Sanford Underground Research Facility in Lead, South Dakota, USA. The initial goals of the DEMONSTRATOR are to establish the required background and scalability of a Ge-based next-generation ton-scale experiment. Following a commissioning run that started in 2015, the first detector module started low-background data production in early 2016. The second detector module was added in August 2016 to begin operation of the entire array. We discuss results of the initial physics runs, as well as the status and physics reach of the full MAJORANA DEMONSTRATOR experiment.
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg 76Ge and 15 kg natGe) to search for neutrinoless double beta decay in Ge-76. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, is already in progress.
The MAJORANA Collaboration is constructing the MAJORANA Demonstrator, an ultra-low background, 40-kg modular high purity Ge detector array to search for neutrinoless double-beta decay in Ge. In view of the next generation of tonne-scale Ge-based neutrinoless double-beta decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The current status of the Demonstrator is discussed, as are plans for its completion.
The MAJORANA Collaboration is searching for the neutrinoless double-beta decay of the nucleus $^{76}$Ge. The MAJORANA DEMONSTRATOR is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a 1-tonne $^{76}$Ge-based search. The ultra low-background conditions require regular calibrations to verify proper function of the detectors. Radioactive line sources can be deployed around the cryostats containing the detectors for regular energy calibrations. When measuring in low-background mode, these line sources have to be stored outside the shielding so they do not contribute to the background. The deployment and the retraction of the source are designed to be controlled by the data acquisition system and do not require any direct human interaction. In this paper, we detail the design requirements and implementation of the calibration apparatus, which provides the event rates needed to define the pulse-shape cuts and energy calibration used in the final analysis as well as data that can be compared to simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا