Do you want to publish a course? Click here

Electrostatic deflector studies using small prototypes

46   0   0.0 ( 0 )
 Added by Kirill Grigoryev
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The search for electric dipole moments of particles in storage rings requires the development of dedicated deflector elements with electrostatic fields. In these rings, electric deflectors shall be used as bending elements for the charged particles. This paper presents studies on scaled-down prototypes, a few cm in size, to investigate different deflector materials at similar electric fields but much smaller distances than real size prototypes.



rate research

Read More

Multi-gap Resistive Plate Chambers (MRPCs) with multi-strip readout are considered to be the optimal detector candidate for the Time-of-Flight (ToF) wall in the Compressed Baryonic Matter (CBM) experiment. In the R&D phase MRPCs with different granularities, low-resistive materials and high voltage stack configurations were developed and tested. Here, we focus on two prototypes called HD-P2 and THU-strip, both with strips of 27 cm$^2$ length and low-resistive glass electrodes. The HD-P2 prototype has a single-stack configuration with 8 gaps while the THU-strip prototype is constructed in a double-stack configuration with 2 $times$ 4 gaps. The performance results of these counters in terms of efficiency and time resolution carried out in a test beam time with heavy-ion beam at GSI in 2014 are presented in this proceeding.
Operating conditions and challenging demands of present and future accelerator experiments result in new requirements on detector systems. There are many ongoing activities aimed to develop new technologies and to improve the properties of detectors based on existing technologies. Our work is dedicated to development of Transition Radiation Detectors (TRD) suitable for different applications. In this paper results obtained in beam tests at SPS accelerator at CERN with the TRD prototype based on straw technology are presented. TRD performance was studied as a function of thickness of the transition radiation radiator and working gas mixture pressure.
The article is devoted to a further study of the Compton camera method of passive detection of small amounts of special nuclear materials, developed by the authors in their previous work. Various cargo scenarios, detector errors, and other issues are addressed.
In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. The combination between gas gain operations and integrating front-end electronics yields a dynamic range as high as eight to nine orders of magnitude. Therefore this device is well suitable for medical imaging or applications such as small angle x-ray scattering, where the requirements on the dynamic of the detector are exceptional high. Basically the described detector is an ionization chamber adapted to fan beam geometry with an active area of 192 cm and a pitch of the anode strips of 150 micrometer. In the vertical direction beams as high as 10 mm can be accepted. Every read-out strip is connected to an analogue integrating electronics channel realized in a custom made VLSI chip. A MicroCAT structure utilized as a shielding grid enables frame rates as high as 10kHz. The high dynamic range observed stems from the fact that the MicroCAT enables active electron amplification in the gas. Thus a single photon resolution can be obtained for low photon fluxes even with the integrating electronics. The specialty of this device is that for each photon flux the gas amplification can be adjusted in such a fashion that the maximum DQE value is achieved.
The TT-PET collaboration is developing an MRI-compatible small animal PET scanner in which the sensitive element is a monolithic silicon pixel ASIC targeting 30 ps RMS time resolution. The photon-detection technique is based on a stack of alternating layers of high-Z photon converter and 100 $mathrm{mu m}$ silicon sensors, to produce a scanner with 0.5 $mathrm{times}$ 0.5 $mathrm{times}$ 0.2 $mathrm{mm^{3}}$ granularity for precise depth-of-interaction measurement. In this paper we present the results of simulation studies for the expected data rate, time-of-flight and spatial resolution, as well as the performance of image reconstruction with and without the use of timing information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا