No Arabic abstract
The energy content of cylindrical gravitational wave spacetimes is analyzed by considering two local descriptions of energy associated with the gravitational field, namely those based on the C-energy and the Bel-Robinson super-energy tensor. A Poynting-Robertson-like effect on the motion of massive test particles, beyond the geodesic approximation, is discussed, allowing them to interact with the background field through an external force which accounts for the exchange of energy and momentum between particles and waves. In addition, the relative strains exerted on a bunch of particles displaced orthogonally to the direction of propagation of the wave are examined, providing invariant information on spacetime curvature effects caused by the passage of the wave. The explicit examples of monochromatic waves with either a single or two polarization states as well as pulses of gravitational radiation are discussed.
According to General Relativity gravity is the result of the interaction between matter and space-time geometry. In this interaction space-time geometry itself is dynamical: it can store and transport energy and momentum in the form of gravitational waves. We give an introductory account of this phenomenon and discuss how the observation of gravitational waves may open up a fundamentally new window on the universe.
The gravitational energy shift for photons is extended to all mass-equivalent energies $E = mc^2$, obeying the quantum condition $E = h u$.On an example of a relativistic binary system, it was shown that the gravitational energy shift would imply,in contrast to Newtonian gravity, the gravitational attraction between full mass-equivalent energies. The corresponding space-time metric becomes exponential. A good agreement was found with all results of weak field tests of General relativity. The strong field effects in a binary system can be easily studied. A long standing problems of Pioneer and other flyby anomalies were also discussed in connection with the violation of total energy conservation. It was shown that relatively small energy non-conservation during the change of the orbit type could explain these persistent anomalies.
General cylindrical waves are the simplest axisymmetrical gravitational waves that contain both $+$ and $times$ modes of polarization. In this paper, we have studied the evolution of general cylindrical gravitational waves in the realm of the characteristic scheme with a numerical code based on the Galerkin-Collocation method. The investigation consists of the numerical realization of concepts such as Bondi mass and the news functions adapted to cylindrical symmetry. The Bondi mass decays due to the presence of the news functions associated with both polarization modes. We have interpreted that each polarization mode as channels from which mass is extracted. Under this perspective, we have presented the enhancement effect of the polarization mode $+$ due to the nonlinear interaction with the mode $times$. After discussing the role of matter in cylindrical symmetry, we have extended the numerical code to include electromagnetic fields.
This decade will see the first direct detections of gravitational waves by observatories such as Advanced LIGO and Virgo. Among the prime sources are coalescences of binary neutron stars and black holes, which are ideal probes of dynamical spacetime. This will herald a new era in the empirical study of gravitation. For the first time, we will have access to the genuinely strong-field dynamics, where low-energy imprints of quantum gravity may well show up. In addition, we will be able to search for effects which might only make their presence known at large distance scales, such as the ones that gravitational waves must traverse in going from source to observer. Finally, coalescing binaries can be used as cosmic distance markers, to study the large-scale structure and evolution of the Universe. With the advanced detector era fast approaching, concrete data analysis algorithms are being developed to look for deviations from general relativity in signals from coalescing binaries, taking into account the noisy detector output as well as the expectation that most sources will be near the threshold of detectability. Similarly, several practical methods have been proposed to use them for cosmology. We explain the state of the art, including the obstacles that still need to be overcome in order to make optimal use of the signals that will be detected. Although the emphasis will be on second-generation observatories, we will also discuss some of the science that could be done with future third-generation ground-based facilities such as Einstein Telescope, as well as with space-based detectors.
Ehlers-Kundt conjecture is a physical assertion about the fundamental role of plane waves for the description of gravitational waves. Mathematically, it becomes equivalent to a problem on the Euclidean plane ${mathbb R}^2$ with a very simple formulation in Classical Mechanics: given a non-necessarily autonomous potential $V(z,u)$, $(z,u)in {mathbb R}^2times {mathbb R}$, harmonic in $z$ (i.e. source-free), the trajectories of its associated dynamical system $ddot{z}(s)=- abla_z V(z(s),s)$ are complete (they live eternally) if and only if $V(z,u)$ is a polynomial in $z$ of degree at most $2$ (so that $V$ is a standard mathematical idealization of vacuum). Here, the conjecture is solved in the significative case that $V$ is bounded polynomially in $z$ for finite values of $uin {mathbb R}$. The mathematical and physical implications of this {em polynomial EK conjecture}, as well as the non-polynomial one, are discussed beyond their original scope.