No Arabic abstract
To shed light on the early phase of a low-mass protostar formation process, we conducted interferometric observations towards a protostar GF9-2 using the CARMA and SMA. The observations have been carried out in the CO J=3-2 line and in the continuum emission at the wavelengths of 3 mm, 1 mm and 850 micron. All the continuum images detected a single point-like source with a radius of 250+/-80 AU at the center of the previously known ~3 Msun molecular cloud core. A compact emission is detected towards the object at the Spitzer MIPS and IRAC bands as well as the four bands at the WISE. Our spectroscopic imaging of the CO line revealed that the continuum source is driving a 1000 AU scale molecular outflow, including a pair of lobes where a collimated higher velocity red lobe exists inside a poorly collimated lower velocity red lobe. These lobes are rather young and the least powerful ones so far detected. A protostellar mass of M~<0.06 Msun was estimated using an upper limit of the protostellar age of (4+/-1)x10^3 yrs and an inferred non-spherical steady mass accretion rate of ~10^{-5} Msun/yr. Together with results from an SED analysis, we discuss that the outflow system is driven by a protostar whose surface temperature of~3,000K, and that the natal cloud core is being dispersed by the outflow.
We present the results of the first high angular resolution observations of SiO maser emission towards the star forming region W51-IRS2 made with the Very Large Array (VLA) and Very Long Baseline Array (VLBA). Our images of the water maser emission in W51-IRS2 reveal two maser complexes bracketing the SiO maser source. One of these water maser complexes appears to trace a bow shock whose opening angle is consistent with the opening angle observed in the distribution of SiO maser emission. A comparison of our water maser image with an image constructed from data acquired 19 years earlier clearly shows the persistence and motion of this bow shock. The proper motions correspond to an outflow velocity of 80 km/s, which is consistent with the data of 19 years ago (that spanned 2 years). We have discovered a two-armed linear structure in the SiO maser emission on scales of ~25 AU, and we find a velocity gradient on the order of 0.1 km/s/AU along the arms. We propose that the SiO maser source traces the limbs of an accelerating bipolar outflow close to an obscured protostar. We estimate that the outflow makes an angle of <20 degrees with respect to the plane of the sky. Our measurement of the acceleration is consistent with a reported drift in the line-of-sight velocity of the W51 SiO maser source.
Whether high mass stars continue to accrete material beyond the formation of an HII region is still an open question. Ionized infall and outflow have been seen in some sources, but their ties to the surrounding molecular gas are not well constrained. We aim to quantify the ionized and molecular gas dynamics in a high mass star forming region (K3-50A) and their interaction. We present CARMA observations of the 3mm continuum, H41alpha, and HCO+ emission, and VLA continuum observations at 23 GHz and 14.7 GHz to quantify the gas and its dynamics in K3-50A. We find large scale dynamics consistent with previous observations. On small scales, we find evidence for interaction between the ionized and molecular gas which suggests the ionized outflow is entraining the molecular one. This is the first time such an outflow entrained by photo ionized gas has been observed. Accretion may be ongoing in K3-50A because an ionized bipolar outflow is still being powered, which is in turn entraining part of the surrounding molecular gas. This outflow scenario is similar to that predicted by ionization feedback models.
We present Submillimeter Array (SMA) observations in the CO J=3-2, SiO J=5-4 and 8-7, and SO 9_8-8_7 lines, as well as Atacama Pathfinder EXperiment (APEX) observations in the CO J=6-5 line, of an extremely high-velocity and jet-like outflow in high-mass star-forming region HH 80--81. The outflow is known to contain two prominent molecular bullets, namely B1 and B2, discovered from our previous SMA CO J=2-1 observations. While B1 is detected in all the CO, SiO, and SO lines, B2 is only detected in CO lines. The CO 3-2/2-1 line ratio in B1 is clearly greater than that in B2. We perform a large velocity gradient analysis of the CO lines and derive a temperature of 70--210 K for B1 and 20--50 K for B2. Taking into account the differences in the velocity, distance from the central source, excitation conditions, and chemistry between the two bullets, we suggest that the bullets are better explained by direct ejections from the innermost vicinity of the central high-mass protostar, and that we are more likely observing the molecular component of a primary wind rather than entrained or swept-up material from the ambient cloud. These findings further support our previous suggestions that the molecular bullets indicate an episodic, disk-mediated accretion in the high-mass star formation process.
The compact radio source Sgr A* is coincident with a 4 million solar mass black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high resolution radio continuum images of the central 3 and report a faint continuous linear structure centered on Sgr A* with a PA~60 degrees. The extension of this feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, ~75 from Sgr A*. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. The linear structure is best characterized by a mildly relativistic jet from Sgr A* with an outflow rate 10^-6 solar mass per year. The near and far-sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for a 2 hole, the minicavity, characterized by disturbed kinematics, enhanced FeII/III line emission, and diffuse X-ray gas. The estimated kinetic luminosity of the outflow is ~1.2x10^{41} erg/s, so the interaction with the bar may be responsible for the Galactic center X-ray flash inferred to be responsible for much of the fluorescent Fe Kalpha line emission from the inner 100pc of the Galaxy.
A full understanding of high-mass star formation requires the study of one of the most elusive components of the energy balance in the interstellar medium: magnetic fields. We report ALMA 1.2 mm, high-resolution (700 au) dust polarization and molecular line observations of the rotating hot molecular core embedded in the high-mass star-forming region IRAS 18089-1732. The dust continuum emission and magnetic field morphology present spiral-like features resembling a whirlpool. The velocity field traced by the H13CO+ (J=3-2) transition line reveals a complex structure with spiral filaments that are likely infalling and rotating, dragging the field with them. We have modeled the magnetic field and find that the best model corresponds to a weakly magnetized core with a mass-to-magnetic-flux ratio (lambda) of 8.38. The modeled magnetic field is dominated by a poloidal component, but with an important contribution from the toroidal component that has a magnitude of 30% of the poloidal component. Using the Davis-Chandrasekhar-Fermi method, we estimate a magnetic field strength of 3.5 mG. At the spatial scales accessible to ALMA, an analysis of the energy balance of the system indicates that gravity overwhelms turbulence, rotation, and the magnetic field. We show that high-mass star formation can occur in weakly magnetized environments, with gravity taking the dominant role.