Do you want to publish a course? Click here

Bootstrap and collider physics of parity violating conformal field theories in $d=3$

102   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study the crossing equations in $d=3$ for the four point function of two $U(1)$ currents and two scalars including the presence of a parity violating term for the $s$-channel stress tensor exchange. We show the existence of a new tower of double trace operators in the $t$-channel whose presence is necessary for the crossing equation to be satisfied and determine the corresponding large spin parity violating OPE coefficients. Contrary to the parity even situation, we find that the parity odd $s$-channel light cone stress tensor block do not have logarithmic singularities. This implies that the parity odd term does not contribute to anomalous dimensions in the crossed channel at this order in light cone expansion. We then study the constraints imposed by reflection positivity and crossing symmetry on such a four point function. We reproduce the previously known parity odd collider bounds through this analysis. The contribution of the parity violating term in the collider bound results from a square root branch cut present in the light cone block as opposed to a logarithmic cut in the parity even case, together with the application of the Cauchy-Schwarz inequality.



rate research

Read More

We derive constraints on three-point functions involving the stress tensor, $T$, and a conserved $U(1)$ current, $j$, in 2+1 dimensional conformal field theories that violate parity, using conformal collider bounds introduced by Hofman and Maldacena. Conformal invariance allows parity-odd tensor-structures for the $langle T T T rangle$ and $ langle j j T rangle$ correlation functions which are unique to three space-time dimensions. Let the parameters which determine the $langle T T T rangle$ correlation function be $t_4$ and $alpha_T$ , where $alpha_T$ is the parity-violating contribution. Similarly let the parameters which determine $ langle j j T rangle$ correlation function be $a_2$, and $alpha_J$ , where $alpha_J$ is the parity-violating contribution. We show that the parameters $(t_4, alpha_T)$ and $(a_2, alpha_J)$ are bounded to lie inside a disc at the origin of the $t_4$ - $alpha_T$ plane and the $a_2$ - $alpha_J$ plane respectively. We then show that large $N$ Chern-Simons theories coupled to a fundamental fermion/boson lie on the circle which bounds these discs. The `t Hooft coupling determines the location of these theories on the boundary circles.
86 - Johan Henriksson 2020
Conformal field theories play a central role in theoretical physics with many applications ranging from condensed matter to string theory. The conformal bootstrap studies conformal field theories using mathematical consistency conditions and has seen great progress over the last decade. In this thesis we present an implementation of analytic bootstrap methods for perturbative conformal field theories in dimensions greater than two, which we achieve by combining large spin perturbation theory with the Lorentzian inversion formula. In the presence of a small expansion parameter, not necessarily the coupling constant, we develop this into a systematic framework, applicable to a wide range of theories. The first two chapters provide the necessary background and a review of the analytic bootstrap. This is followed by a chapter which describes the method in detail, taking the form of a practical guide to large spin perturbation theory by means of a step-by-step implementation. The second part of the thesis presents several explicit implementations of the framework, taking examples from a number of well-studied conformal field theories. We show how many literature results can be reproduced from a purely bootstrap perspective and how a variety of new results can be derived.
127 - Zhijin Li , David Poland 2020
Infrared fixed points of gauge theories provide intriguing targets for the modern conformal bootstrap program. In this work we provide some preliminary evidence that a family of gauged fermionic CFTs saturate bootstrap bounds and can potentially be solved with the conformal bootstrap. We start by considering the bootstrap for $SO(N)$ vector 4-point functions in general dimension $D$. In the large $N$ limit, upper bounds on the scaling dimensions of the lowest $SO(N)$ singlet and traceless symmetric scalars interpolate between two solutions at $Delta =D/2-1$ and $Delta =D-1$ via generalized free field theory. In 3D the critical $O(N)$ vector models are known to saturate the bootstrap bounds and correspond to the kinks approaching $Delta =1/2$ at large $N$. We show that the bootstrap bounds also admit another infinite family of kinks ${cal T}_D$, which at large $N$ approach solutions containing free fermion bilinears at $Delta=D-1$ from below. The kinks ${cal T}_D$ appear in general dimensions with a $D$-dependent critical $N^*$ below which the kink disappears. We also study relations between the bounds obtained from the bootstrap with $SO(N)$ vectors, $SU(N)$ fundamentals, and $SU(N)times SU(N)$ bi-fundamentals. We provide a proof for the coincidence between bootstrap bounds with different global symmetries. We show evidence that the proper symmetries of the underlying theories of ${cal T}_D$ are subgroups of $SO(N)$, and we speculate that the kinks ${cal T}_D$ relate to the fixed points of gauge theories coupled to fermions.
Supersymmetric theories with the same bosonic content but different fermions, aka emph{twins}, were thought to exist only for supergravity. Here we show that pairs of super conformal field theories, for example exotic $mathcal{N}=3$ and $mathcal{N}=1$ theories in $D=4$ spacetime dimensions, can also be twin. We provide evidence from three different perspectives: (i) a twin S-fold construction, (ii) a double-copy argument and (iii) by identifying candidate twin holographically dual gauged supergravity theories. Furthermore, twin W-supergravity theories then follow by applying the double-copy prescription to exotic super conformal field theories.
86 - Yin-Chen He , Junchen Rong , 2021
We propose a roadmap for bootstrapping conformal field theories (CFTs) described by gauge theories in dimensions $d>2$. In particular, we provide a simple and workable answer to the question of how to detect the gauge group in the bootstrap calculation. Our recipe is based on the notion of emph{decoupling operator}, which has a simple (gauge) group theoretical origin, and is reminiscent of the null operator of $2d$ Wess-Zumino-Witten CFTs in higher dimensions. Using the decoupling operator we can efficiently detect the rank (i.e. color number) of gauge groups, e.g., by imposing gap conditions in the CFT spectrum. We also discuss the physics of the equation of motion, which has interesting consequences in the CFT spectrum as well. As an application of our recipes, we study a prototypical critical gauge theory, namely the scalar QED which has a $U(1)$ gauge field interacting with critical bosons. We show that the scalar QED can be solved by conformal bootstrap, namely we have obtained its kinks and islands in both $d=3$ and $d=2+epsilon$ dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا