No Arabic abstract
We study the energy level structures of the defective graphane lattice, where a carbon dimer defect is created by removing the hydrogen atoms on two nearest-neighbor carbon sites. Robust defect states emerge inside the bulk insulating gap of graphane. While for the stoichiometric half-filled system there are two doubly degenerate defect levels, there are four nondegenerate and spin-polarized in-gap defect levels in the system with one electron less than half filling. A universal set of quantum gates can be realized in the defective graphane lattice, by triggering resonant transitions among the defect states via optical pulses and emph{ac} magnetic fields. The sizable energy separation between the occupied and the empty in-gap states enables precise control at room temperature. The spatial locality of the in-gap states implies a qubit network of extremely high areal density. Based on these results, we propose that graphane as a unique platform could be used to construct the future all-purpose quantum computers.
For atomic thin layer insulating materials we provide an exact analytic form of the two-dimensional screened potential. In contrast to three-dimensional systems where the macroscopic screening can be described by a static dielectric constant in 2D systems the macroscopic screening is non local (q-dependent) showing a logarithmic divergence for small distances and reaching the unscreened Coulomb potential for large distances. The cross-over of these two regimes is dictated by 2D layer polarizability that can be easily computed by standard first-principles techniques. The present results have strong implications for describing gap-impurity levels and also exciton binding energies. The simple model derived here captures the main physical effects and reproduces well, for the case of graphane, the full many-body GW plus Bethe-Salpeter calculations. As an additional outcome we show that the impurity hole-doping in graphane leads to strongly localized states, what hampers applications in electronic devices. In spite of the inefficient and nonlocal two-dimensional macroscopic screening we demonstrate that a simple $mathbf{k}cdotmathbf{p}$ approach is capable to describe the electronic and transport properties of confined 2D systems.
A proposal for a magnetic quantum processor that consists of individual molecular spins coupled to superconducting coplanar resonators and transmission lines is carefully examined. We derive a simple magnetic quantum electrodynamics Hamiltonian to describe the underlying physics. It is shown that these hybrid devices can perform arbitrary operations on each spin qubit and induce tunable interactions between any pair of them. The combination of these two operations ensures that the processor can perform universal quantum computations. The feasibility of this proposal is critically discussed using the results of realistic calculations, based on parameters of existing devices and molecular qubits. These results show that the proposal is feasible, provided that molecules with sufficiently long coherence times can be developed and accurately integrated into specific areas of the device. This architecture has an enormous potential for scaling up quantum computation thanks to the microscopic nature of the individual constituents, the molecules, and the possibility of using their internal spin degrees of freedom.
The excitations in graphene and some other materials are described by two-dimensional massless Dirac equation with applied external potential of some kind. Solutions of this zero energy equation are built analytically for a wide class of scalar potentials. In contrast to most publications on analytical solutions of massless two-dimensional Dirac equation, our potentials really depend on both spatial coordinates in some bounded domain. Several examples of such construction are given explicitly.
A detailed understanding of charged defects in two-dimensional semiconductors is needed for the development of ultrathin electronic devices. Here, we study negatively charged acceptor impurities in monolayer WS$_2$ using a combination of scanning tunnelling spectroscopy and large-scale atomistic electronic structure calculations. We observe several localized defect states of hydrogenic wave function character in the vicinity of the valence band edge. Some of these defect states are bound, while others are resonant. The resonant states result from the multi-valley valence band structure of WS$_2$, whereby localized states originating from the secondary valence band maximum at $Gamma$ hybridize with continuum states from the primary valence band maximum at K/K$^{prime}$. Resonant states have important consequences for electron transport as they can trap mobile carriers for several tens of picoseconds.
The Su-Schrieffer-Heeger (SSH) model on a two-dimensional square lattice has been considered as a significant platform for studying topological multipole insulators. However, due to the highly-degenerate bulk energy bands protected by $ C_{4v} $ and chiral symmetry, the discussion of the zero-energy topological corner states and the corresponding physical realization have been rarely presented. In this work, by tuning the hopping terms to break $ C_{4v} $ symmetry down to $ C_{2v} $ symmetry but with the topological phase invariant, we show that the degeneracies can be removed and a complete band gap can be opened, which provides robust protection for the spectrally isolated zero-energy corner states. Meanwhile, we propose a rigorous acoustic crystalline insulator and therefore these states can be observed directly. Our work reveals the topological properties of the robust zero-energy states, and provides a new way to explore novel topological phenomena.