Do you want to publish a course? Click here

Masses and radii for the three super-Earths orbiting GJ 9827, and implications for the composition of small exoplanets

83   0   0.0 ( 0 )
 Added by W. K. M. Rice
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Super-Earths belong to a class of planet not found in the Solar System, but which appear common in the Galaxy. Given that some super-Earths are rocky, while others retain substantial atmospheres, their study can provide clues as to the formation of both rocky planets and gaseous planets, and - in particular - they can help to constrain the role of photo-evaporation in sculpting the exoplanet population. GJ 9827 is a system already known to host 3 super-Earths with orbital periods of 1.2, 3.6 and 6.2 days. Here we use new HARPS-N radial velocity measurements, together with previously published radial velocities, to better constrain the properties of the GJ 9827 planets. Our analysis cant place a strong constraint on the mass of GJ 9827 c, but does indicate that GJ 9827 b is rocky with a composition that is probably similar to that of the Earth, while GJ 9827 d almost certainly retains a volatile envelope. Therefore, GJ 9827 hosts planets on either side of the radius gap that appears to divide super-Earths into pre-dominantly rocky ones that have radii below $sim 1.5 R_oplus$, and ones that still retain a substantial atmosphere and/or volatile components, and have radii above $sim 2 R_oplus$. That the less heavily irradiated of the 3 planets still retains an atmosphere, may indicate that photoevaporation has played a key role in the evolution of the planets in this system.



rate research

Read More

We report on the discovery of three transiting planets around GJ~9827. The planets have radii of 1.75$_{-0.12}^{+0.11 }$, 1.36$_{- 0.09 }^{+ 0.09}$, and 2.10$_{- 0.15 }^{+ 0.15 }$~R$_{oplus}$, and periods of 1.20896, 3.6480, and 6.2014 days, respectively. The detection was made in Campaign 12 observations as part of our K2 survey of nearby stars. GJ~9827 is a $V = 10.39$~mag K6V star at distance of 30.3 parsecs and the nearest star to be found hosting planets by Kepler and K2. The radial velocity follow-up, high resolution imaging, and detection of multiple transiting objects near commensurability drastically reduce the false positive probability. The orbital periods of GJ~9827~b, c and d planets are very close to the 1:3:5 mean motion resonance. Our preliminary analysis shows that GJ~9827 planets are excellent candidates for atmospheric observations. Besides, the planetary radii span both sides of the rocky and gaseous divide, hence the system will be an asset in expanding our understanding of the threshold.
We report on radial velocity time series for two M0.0V stars, GJ338B and GJ338A, using the CARMENES spectrograph, complemented by ground-telescope photometry from Las Cumbres and Sierra Nevada observatories. We aim to explore the presence of small planets in tight orbits using the spectroscopic radial velocity technique. We obtained 159 and 70 radial velocity measurements of GJ338B and A, respectively, with the CARMENES visible channel. We also compiled additional relative radial velocity measurements from the literature and a collection of astrometric data that cover 200 a of observations to solve for the binary orbit. We found dynamical masses of 0.64$pm$0.07M$_odot$ for GJ338B and 0.69$pm$0.07M$_odot$ for GJ338A. The CARMENES radial velocity periodograms show significant peaks at 16.61$pm$0.04 d (GJ338B) and 16.3$^{+3.5}_{-1.3}$ d (GJ338A), which have counterparts at the same frequencies in CARMENES activity indicators and photometric light curves. We attribute these to stellar rotation. GJ338B shows two additional, significant signals at 8.27$pm$0.01 and 24.45$pm$0.02 d, with no obvious counterparts in the stellar activity indices. The former is likely the first harmonic of the stars rotation, while we ascribe the latter to the existence of a super-Earth planet with a minimum mass of 10.27$^{+1.47}_{-1.38}$$M_{oplus}$ orbiting GJ338B. GJ338B b lies inside the inner boundary of the habitable zone around its parent star. It is one of the least massive planets ever found around any member of stellar binaries. The masses, spectral types, brightnesses, and even the rotational periods are very similar for both stars, which are likely coeval and formed from the same molecular cloud, yet they differ in the architecture of their planetary systems.
The Kepler mission showed us that planets with sizes between that of Earth and Neptune appear to be the most common type in our Galaxy. These super-Earths continue to be of great interest for exoplanet formation, evolution, and composition studies. However, the number of super-Earths with well-constrained mass and radius measurements remains small (40 planets with $sigma_{rm{mass}}<$ 25%), due in part to the faintness of their host stars causing ground-based mass measurements to be challenging. Recently, three transiting super-Earth planets were detected by the K2 mission around the nearby star GJ 9827/HIP 115752, at only 30 pc away. The radii of the planets span the radius gap detected by Fulton et al. (2017), and all orbit within ~6.5 days, easing follow-up observations. Here we report radial velocity (RV) observations of GJ 9827, taken between 2010 and 2016 with the Planet Finder Spectrograph on the Magellan II Telescope. We employ two different RV analysis packages, SYSTEMIC and RadVel, to derive masses and thus densities of the GJ 9827 planets. We also test a Gaussian Process regression analysis, but find the correlated stellar noise is not well constrained by the PFS data, and that the GP tends to over fit the RV semi-amplitudes resulting in a lower K value. Our RV observations are not able to place strong mass constraints on the two outer planets (c & d) but do indicate that planet b, at 1.64 R$_{oplus}$ and ~8 M$_{oplus}$, is one of the most massive (and dense) super-Earth planets detected to date.
149 - S. Stock , E. Nagel , J. Kemmer 2020
We announce the discovery of two planets orbiting the M dwarfs GJ 251 ($0.360pm0.015$ M$_odot$) and HD 238090 ($0.578pm0.021$ M$_odot$) based on CARMENES radial velocity (RV) data. In addition, we independently confirm with CARMENES data the existence of Lalande 21185 b, a planet that has recently been discovered with the SOPHIE spectrograph. All three planets belong to the class of warm or temperate super-Earths and share similar properties. The orbital periods are 14.24 d, 13.67 d, and 12.95 d and the minimum masses are $4.0pm0.4$ $M_oplus$, $6.9pm0.9$ $M_oplus$, and $2.7pm0.3$ $M_oplus$ for GJ 251 b, HD 238090 b, and Lalande 21185 b, respectively. Based on the orbital and stellar properties, we estimate equilibrium temperatures of $351.0pm1.4$ K for GJ 251 b, $469.6pm2.6$ K for HD 238090 b, and $370.1pm6.8$ K for Lalande 21185 b. For the latter we resolve the daily aliases that were present in the SOPHIE data and that hindered an unambiguous determination of the orbital period. We find no significant signals in any of our spectral activity indicators at the planetary periods. The RV observations were accompanied by contemporaneous photometric observations. We derive stellar rotation periods of $122.1pm2.2$ d and $96.7pm3.7$ d for GJ 251 and HD 238090, respectively. The RV data of all three stars exhibit significant signals at the rotational period or its first harmonic. For GJ 251 and Lalande 21185, we also find long-period signals around 600 d, and 2900 d, respectively, which we tentatively attribute to long-term magnetic cycles. We apply a Bayesian approach to carefully model the Keplerian signals simultaneously with the stellar activity using Gaussian process regression models and extensively search for additional significant planetary signals hidden behind the stellar activity.
Young exoplanets can offer insight into the evolution of planetary atmospheres, compositions, and architectures. We present the discovery of the young planetary system TOI 451 (TIC 257605131, Gaia DR2 4844691297067063424). TOI 451 is a member of the 120-Myr-old Pisces--Eridanus stream (Psc--Eri). We confirm membership in the stream with its kinematics, its lithium abundance, and the rotation and UV excesses of both TOI 451 and its wide binary companion, TOI 451 B (itself likely an M dwarf binary). We identified three candidate planets transiting in the TESS data and followed up the signals with photometry from Spitzer and ground-based telescopes. The system comprises three validated planets at periods of 1.9, 9.2 and 16 days, with radii of 1.9, 3.1, and 4.1 Earth radii, respectively. The host star is near-solar mass with V=11.0 and H=9.3 and displays an infrared excess indicative of a debris disk. The planets offer excellent prospects for transmission spectroscopy with HST and JWST, providing the opportunity to study planetary atmospheres that may still be in the process of evolving.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا