Do you want to publish a course? Click here

Development of Large-area Lithium-drifted Silicon Detectors for the GAPS Experiment

81   0   0.0 ( 0 )
 Added by Masayoshi Kozai
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed large-area lithium-drifted silicon (Si(Li)) detectors to meet the unique requirements of the General Antiparticle Spectrometer (GAPS) experiment. GAPS is an Antarctic balloon-borne mission scheduled for the first flight in late 2020. The GAPS experiment aims to survey low-energy cosmic-ray antinuclei, particularly antideuterons, which are recognized as essentially background-free signals from dark matter annihilation or decay. The GAPS Si(Li) detector design is a thickness of 2.5 mm, diameter of 10 cm and 8 readout strips. The energy resolution of <4 keV (FWHM) for 20 to 100 keV X-rays at temperature of -35 to -45 C, far above the liquid nitrogen temperatures frequently used to achieve fine energy resolution, is required. We developed a high-quality Si crystal and Li-evaporation, diffusion and drift methods to form a uniform Li-drifted layer. Guard ring structure and optimal etching of the surface are confirmed to suppress the leakage current, which is a main source of noise. We found a thin un-drifted layer retained on the p-side effectively suppresses the leakage current. By these developments, we succeeded in developing the GAPS Si(Li) detector. As the ultimate GAPS instrument will require >1000 10-cm diameter Si(Li) detectors to achieve high sensitivity to rare antideuteron events, high-yield production is also a key factor for the success of the GAPS mission.



rate research

Read More

A Si(Li) detector fabrication procedure has been developed with the aim of satisfying the unique requirements of the GAPS (General Antiparticle Spectrometer) experiment. Si(Li) detectors are particularly well-suited to the GAPS detection scheme, in which several planes of detectors act as the target to slow and capture an incoming antiparticle into an exotic atom, as well as the spectrometer and tracker to measure the resulting decay X-rays and annihilation products. These detectors must provide the absorption depth, energy resolution, tracking efficiency, and active area necessary for this technique, all within the significant temperature, power, and cost constraints of an Antarctic long-duration balloon flight. We report here on the fabrication and performance of prototype 2-diameter, 1-1.25 mm-thick, single-strip Si(Li) detectors that provide the necessary X-ray energy resolution of $sim$4 keV for a cost per unit area that is far below that of previously-acquired commercial detectors. This fabrication procedure is currently being optimized for the 4-diameter, 2.5 mm-thick, multi-strip geometry that will be used for the GAPS flight detectors.
The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS experiment (pGAPS) was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS experiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agencys (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 hours, with over 3 hours at float altitude (~33 km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded.
The Cherenkov Telescope Array (CTA) is the the next generation facility of imaging atmospheric Cherenkov telescopes; two sites will cover both hemispheres. CTA will reach unprecedented sensitivity, energy and angular resolution in very-high-energy gamma-ray astronomy. Each CTA array will include four Large Size Telescopes (LSTs), designed to cover the low-energy range of the CTA sensitivity ($sim$20 GeV to 200 GeV). In the baseline LST design, the focal-plane camera will be instrumented with 265 photodetector clusters; each will include seven photomultiplier tubes (PMTs), with an entrance window of 1.5 inches in diameter. The PMT design is based on mature and reliable technology. Recently, silicon photomultipliers (SiPMs) are emerging as a competitor. Currently, SiPMs have advantages (e.g. lower operating voltage and tolerance to high illumination levels) and disadvantages (e.g. higher capacitance and cross talk rates), but this technology is still young and rapidly evolving. SiPM technology has a strong potential to become superior to the PMT one in terms of photon detection efficiency and price per square mm of detector area. While the advantage of SiPMs has been proven for high-density, small size cameras, it is yet to be demonstrated for large area cameras such as the one of the LST. We are working to develop a SiPM-based module for the LST camera, in view of a possible camera upgrade. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall LST camera design.
410 - E. Del Monte 2014
During the three years long assessment phase of the LOFT mission, candidate to the M3 launch opportunity of the ESA Cosmic Vision programme, we estimated and measured the radiation damage of the silicon drift detectors (SDDs) of the satellite instrumentation. In particular, we irradiated the detectors with protons (of 0.8 and 11 MeV energy) to study the increment of leakage current and the variation of the charge collection efficiency produced by the displacement damage, and we bombarded the detectors with hypervelocity dust grains to measure the effect of the debris impacts. In this paper we describe the measurements and discuss the results in the context of the LOFT mission.
Telescope Array (TA) is the largest ultrahigh energy cosmic-ray (UHECR) observatory in the Northern Hemisphere. It explores the origin of UHECRs by measuring their energy spectrum, arrival-direction distribution, and mass composition using a surface detector (SD) array covering approximately 700 km$^2$ and fluorescence detector (FD) stations. TA has found evidence for a cluster of cosmic rays with energies greater than 57 EeV. In order to confirm this evidence with more data, it is necessary to increase the data collection rate.We have begun building an expansion of TA that we call TAx4. In this paper, we explain the motivation, design, technical features, and expected performance of the TAx4 SD. We also present TAx4s current status and examples of the data that have already been collected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا