Do you want to publish a course? Click here

Role of Bloch Waves in baryon-number violating processes

67   0   0.0 ( 0 )
 Added by Yucheng Qiu
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In the Bloch-wave approach to estimate the baryon-number-violating scattering cross section in the standard electroweak theory in the laboratory, we clarify the relation between the single sphaleron barrier and multiple (near periodic) sphaleron barrier cases. We explain how a realistic consideration modifies/corrects the idealized Bloch wave and the resonant tunneling approximation. The basic approach is in part analogous to the well-known triple-$alpha$ process to form carbon in nucleosynthesis.



rate research

Read More

For the periodic sphaleron potential in the electroweak theory, we find the one-dimensional time-independent Schr{o}dinger equation with the Chern-Simons number as the coordinate, construct the Bloch wave function and determine the corresponding conducting (pass) band structure. We show that the baryon-lepton number violating processes can take place without the exponential tunneling suppression (at zero temperature) at energies around and above the barrier height (sphaleron energy) at 9.0 TeV. Phenomenologically, probable detection of such processes at LHC is discussed.
Earlier estimates have argued that the baryon number violating scattering cross-section in the laboratory is exponentially small so it will never be observed, even for incoming 2-particle energy well above the sphaleron energy of 9 TeV. However, we argue in arXiv:1505.03690 that, due to the periodic nature of the sphaleron potential, the event rate for energies above the sphaleron energy may be high enough to be observed in the near future. That is, there is a discrepancy of about 70 orders of magnitude between the two estimates. Here we argue why and how the multi-sphaleron processes are crucial to the event rate estimate, a very important resonant tunneling property that has not been taken into account before. We also summarize the input assumptions and reasoning adopted in our estimate, when compared to the earlier estimates.
114 - Xiao-Gang He 2008
We study baryon number violating nucleon decays induced by unparticle interactions with the standard model particles. We find that the lowest dimension operators which cause nucleon decays can arise at dimension 6 + (d_s-3/2) with the unparticles being a spinor of dimension d_s=d_U +1/2. For scalar and vector unparticles of dimension d_U, the lowest order operatoers arise at 6+d_U and 7+d_U dimensions,respectively. Comparing the spinor unparticle induced n to O^s_U and experimental bound on invisible decay of a neutron from KamLAND, we find that the scale for unparticle physics is required to be larger than 10^{10} GeV for d_U < 2 if the couplings are set to be of order one. For scalar and vector unparticles, the dominant baryon number violating decay modes are nto bar u + O_U (O^mu_U) and p to e^+ + O_U (O^mu_U). The same experimental bound puts the scales for scalar and vector unparticle to be larger than 10^{7} and 10^{5} GeV for d_U <2 with couplings set to be of order one. Data on, p to e^+ invisible, puts similar constraints on unparticle interactions.
We calculate the one-loop anomalous dimension matrix for the dimension-six baryon number violating operators of the Standard Model effective field theory, including right-handed neutrino fields. We discuss the flavor structure of the renormalization group evolution in the contexts of minimal flavor violation and unification.
We discuss the constraints of lepton mixing angles from lepton number violating processes such as neutrinoless double beta decay, (mu^-)-(e^+) conversion and K decay, $K^- to pi^+mu^-mu^-$ which are allowed only if neutrinos are Majorana particles. The rates of these processes are proportional to the averaged neutrino mass defined by $<m_{ u} >_{a b}equiv |sum_{j=1}^{3}U_{a j} U_{b j}m_j|$ in the absence of right-handed weak coupling. Here $a, b (j)$ are flavour(mass) eigen states and $U_{a j}$ is the left-handed lepton mixing matrix. We obtain the consistency conditions which are satisfied irrelevant to the concrete values of CP violation phases (three phases in Majorana neutrinos). These conditions constrain the lepton mixing angles, neutrino masses $m_i$ and (< m_{ u} >_{a b}). By using these constraints we obtain the limits on the averaged neutrino masses for (mu^-)-(e^+) conversion and K decay, $K^- to pi^+mu^-mu^-$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا