Do you want to publish a course? Click here

Enhancement of Spintronic Terahertz Emission via Annealing in Ferromagnetic Heterostructures

62   0   0.0 ( 0 )
 Added by Xiaojun Wu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We systematically investigate the influence of annealing effect on terahertz (THz) generation from CoFeB based magnetic nanofilms driven by femtosecond laser pulses. Three times enhancement of THz yields are achieved in W/CoFeB through annealing effect, and double boosting is obtained in Pt/CoFeB. The mechanism of annealing effect originates from the increase of hot electron mean free path induced by crystallization, which is experimentally corroborated by THz transmission measurement on time-domain spectroscopy. Comparison studies of the thickness dependent THz efficiency after annealing are also implemented, and we eventually conclude that annealing and thickness optimization are of importance for scaling up THz intensity. Our observations not only deepen understanding of the spintronic THz radiation mechanism but also provide normal platform for high speed spintronic opto-electronic devices.

rate research

Read More

Antiferromagnets are outstanding candidates for the next generation of spintronic applications, with great potential for downscaling and decreasing power consumption. Recently, the manipulation of bulk properties of antiferromagnets has been realized by several different approaches. However, the interfacial spin order of antiferromagnets is an important integral part of spintronic devices, thus the successful control of interfacial antiferromagnetic spins is urgently desired. Here, we report the high controllability of interfacial spins in antiferromagnetic / ferromagnetic / heavy metal heterostructure devices using spin-orbit torque (SOT) assisted by perpendicular or longitudinal magnetic fields. Switching of the interfacial spins from one to another direction through multiple intermediate states is demonstrated. The field-free SOT-induced switching of antiferromagnetic interfacial spins is also observed, which we attribute to the effective built-in out-of-plane field due to unequal upward and downward interfacial spin populations. Our work provides a precise way to modulate the interfacial spins at an antiferromagnet / ferromagnet interface via SOT, which will greatly promote innovative designs for next generation spintronic devices.
Employing electron spin instead of charge to develop spintronic devices holds the merits of low-power consumption in information technologies. Meanwhile, the demand for increasing speed in spintronics beyond current CMOS technology has further triggered intensive researches for ultrafast control of spins even up to unprecedent terahertz regime. The femtosecond laser has been emerging as a potential technique to generate an ultrafast spin-current burst for magnetization manipulation. However, there is a great challenge to establish all-optical control and monitor of the femtosecond transient spin current. Deep insights into the physics and mechanism are extremely essential for the technique. Here, we demonstrate coherently nonthermal excitation of femtosecond spin-charge current conversion parallel to the magnetization in W/CoFeB/Pt heterostructures driven by linearly polarized femtosecond laser pulses. Through systematical investigation we observe the terahertz emission polarization depends on both the magnetization direction and structural asymmetry. We attribute this phenomenon of the terahertz generation parallel to the magnetization induced by linearly polarized femtosecond laser pulses probably to inverse spin-orbit torque effect. Our work not only is beneficial to the deep understanding of spin-charge conversion and spin transportation, but also helps develop novel on-chip terahertz opto-spintronic devices.
159 - Mengji Chen , Yang Wu , Yang Liu 2018
An ultra-broadband THz emitter covering a wide range of frequencies from 0.1 to 10 THz is highly desired for spectroscopy applications. So far, spintronic THz emitters have been proven as one class of efficient THz sources with a broadband spectrum while the performance in the lower frequency range (0.1 to 0.5 THz) limits its applications. In this work, we demonstrate a novel concept of a current-enhanced broad spectrum from spintronic THz emitters combined with semiconductor materials. We observe a 2-3 order enhancement of the THz signals in a lower THz frequency range (0.1 to 0.5 THz), in addition to a comparable performance at higher frequencies from this hybrid emitter. With a bias current, there is a photoconduction contribution from semiconductor materials, which can be constructively interfered with the THz signals generated from the magnetic heterostructures driven by the inverse spin Hall effect. Our findings push forward the utilization of metallic heterostructures-based THz emitters on the ultra-broadband THz emission spectroscopy.
Terahertz emission spectroscopy (TES) has recently played an important role in unveiling the spin dynamics at a terahertz (THz) frequency range. So far, ferromagnetic (FM)/nonmagnetic (NM) heterostructures have been intensively studied as THz sources. Compensated magnets such as a ferrimagnet (FIM) and antiferromagnet (AFM) are other types of magnetic materials with interesting spin dynamics. In this work, we study TES from compensated magnetic heterostructures including CoGd FIM alloy or IrMn AFM layers. Systematic measurements on composition and temperature dependences of THz emission from CoGd/Pt bilayer structures are conducted. It is found that the emitted THz field is determined by the net spin polarization of the laser induced spin current rather than the net magnetization. The temperature robustness of the FIM based THz emitter is also demonstrated. On the other hand, an AFM plays a different role in THz emission. The IrMn/Pt bilayer shows negligible THz signals, whereas Co/IrMn induces sizable THz outputs, indicating that IrMn is not a good spin current generator, but a good detector. Our results not only suggest that a compensated magnet can be utilized for robust THz emission, but also provide a new approach to study the magnetization dynamics especially near the magnetization compensation point.
179 - Rui Wu , Shilei Ding , Youfang Lai 2018
The spin configuration in the ferromagnetic part during the magnetization reversal plays a crucial role in the exchange bias effect. Through Monte Carlo simulation, the exchange bias effect in ferromagnetic-antiferromagnetic core-shell nanoparticles is investigated. Magnetization reversals in the ferromagnetic core were controlled between the coherent rotation and the domain wall motion by modulating ferromagnetic domain wall width with parameters of uniaxial anisotropy constant and exchange coupling strength. An anomalous monotonic dependence of exchange bias on the uniaxial anisotropy constant is found in systems with small exchange coupling, showing an obvious violation of classic Meiklejohn-Bean model, while domain walls are found to form close to the interface and propagate in the ferromagnetic core with larger uniaxial anisotropy in both branches of the hysteresis. The asymmetric magnetization reversal with the formation of a spherical domain wall dramatically reduces the coercive field in the ascending branch, leading to the enhancement of the exchange bias. The results provide another degree of freedom to optimize the magnetic properties of magnetic nanoparticles for applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا