Do you want to publish a course? Click here

Thermodynamics in quenched QCD: energy--momentum tensor with two-loop order coefficients in the gradient flow formalism

76   0   0.0 ( 0 )
 Added by Hiroshi Suzuki
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Recently, Harlander et al. [Eur. Phys. J. C {bf 78}, 944 (2018)] have computed the two-loop order (i.e., NNLO) coefficients in the gradient-flow representation of the energy--momentum tensor (EMT) in vector-like gauge theories. In this paper, we study the effect of the two-loop order corrections (and the three-loop order correction for the trace part of the EMT, which is available through the trace anomaly) on the lattice computation of thermodynamic quantities in quenched QCD. The use of the two-loop order coefficients generally reduces the $t$~dependence of the expectation values of the EMT in the gradient-flow representation, where $t$~is the flow time. With the use of the two-loop order coefficients, therefore, the $tto0$ extrapolation becomes less sensitive to the fit function, the fit range, and the choice of the renormalization scale; the systematic error associated with these factors is considerably reduced.



rate research

Read More

We study thermodynamic properties of Nf=2+1 QCD on the lattice adopting O(a)-improved Wilson quark action and Iwasaki gauge action. To cope with the problems due to explicit violation of the Poincare and chiral symmetries, we apply the Small Flow-time eXpansion (SFtX) method based on the gradient flow, which is a general method to correctly calculate any renormalized observables on the lattice. In this method, the matching coefficients in front of operators in the small flow-time expansion are calculated by perturbation theory. In a previous study using one-loop matching coefficients, we found that the SFtX method works well for the equation of state, chiral condensates and susceptibilities. In this paper, we study the effect of two-loop matching coefficients by Harlander et al. We also test the influence of the renormalization scale in the SFtX method. We find that, by adopting the mu_0 renormalization scale of Harlander et al. instead of the conventional mu_d=1/sqrt{8t} scale, the linear behavior at large t is improved so that we can perform the t -> 0 extrapolation of the SFtX method more confidently. In the calculation of the two-loop matching coefficients by Harlander et al., the equation of motion for quark fields was used. For the entropy density in which the equation of motion has no effects, we find that the results using the two-loop coefficients agree well with those using one-loop coefficients. On the other hand, for the trace anomaly which is affected by the equation of motion, we find discrepancies between the one- and two-loop results at high temperatures. By comparing the results of one-loop coefficients with and without using the equation of motion, the main origin of the discrepancies is suggested to be attributed to O((aT)^2)=O(1/N_t^2) discretization errors in the equation of motion at N_t =< 10.
75 - Etsuko Itou , Sinya Aoki 2017
To obtain the precise values of the bulk quantities and transport coefficients in quark-gluon-plasma phase, we propose that a direct calculation of the renormalized energy-momentum tensor (EMT) on the lattice using the gradient flow. From one-point function of EMT, authors in Ref.[1] obtained the interaction measure and thermal entropy. The results are consistent with the one obtained by the integral method. Based on the success, we try to measure the two-point function of EMT, which is related to the transport coefficients. Advantages of our method are (1) a clear signal because of the smearing effects of the gradient flow and (2) no need to calculate the wave function renormalization of EMT. In addition, we give a short remark on a comparison of the numerical cost between the positive- and adjoint-flow methods for fermions, needed to obtain the EMT in the (2+1) flavor QCD.
We report results on the proton mass decomposition and also on related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of $N_f = 2+1$ DWF configurations with three lattice spacings and three volumes, and several pion masses including the physical pion mass. With fully non-perturbative renormalization (and universal normalization on both quark and gluon), we find that the quark energy and glue field energy contribute 33(4)(4)% and 37(5)(4)% respectively in the $overline{MS}$ scheme at $mu = 2$ GeV. A quarter of the trace anomaly gives a 23(1)(1)% contribution to the proton mass based on the sum rule, given 9(2)(1)% contribution from the $u, d,$ and $s$ quark scalar condensates. The $u,d,s$ and glue momentum fractions in the $overline{MS}$ scheme are in good agreement with global analyses at $mu = 2$ GeV.
The energy density and the pressure of SU(3) gauge theory at finite temperature are studied by direct lattice measurements of the renormalized energy-momentum tensor obtained by the gradient flow. Numerical analyses are carried out with $beta=6.287$--$7.500$ corresponding to the lattice spacing $a= 0.013$--$0.061,mathrm{fm}$. The spatial (temporal) sizes are chosen to be $N_s= 64$, $96$, $128$ ($N_{tau}=12$, $16$, $20$, $22$, $24$) with the aspect ratio, $5.33 le N_s/N_{tau} le 8$. Double extrapolation, $arightarrow 0$ (the continuum limit) followed by $trightarrow 0$ (the zero flow-time limit), is taken using the numerical data. Above the critical temperature, the thermodynamic quantities are obtained with a few percent precision including statistical and systematic errors. The results are in good agreement with previous high-precision data obtained by using the integral method.
The energy-momentum tensor plays an important role in QCD thermodynamics. Its expectation value contains information of the pressure and the energy density as its diagonal part. Further properties like viscosity and specific heat can be extracted from its correlation function. Recently a new method based on the gradient flow was introduced to calculate the energy-momentum tensor on the lattice, and has been successfully applied to quenched QCD. In this paper, we apply the gradient flow method to calculate the energy-momentum tensor in (2+1)-flavor QCD. As the first application of the method with dynamical quarks, we study at a single but fine lattice spacing a=0.07 fm with heavy u and d quarks ($m_pi/m_rho=0.63$) and approximately physical s quark. Performing simulations on lattices with Nt=16 to 4, the temperature range of T=174-697 MeV is covered. We find that the results of the pressure and the energy density by the gradient flow method are consistent with the previous results using the T-integration method at T<280 MeV, while the results show disagreement at T>350 MeV (Nt<8), presumably due to the small-Nt lattice artifact of $O((aT)^2)=O(1/N_t^2)$. We also apply the gradient flow method to evaluate the chiral condensate taking advantage of the gradient flow method that renormalized quantities can be directly computed avoiding the difficulty of explicit chiral violation with lattice quarks. We compute the renormalized chiral condensate in the MS-bar scheme at renormalization scale $mu=2$ GeV with a high precision to study the temperature dependence of the chiral condensate and its disconnected susceptibility. Even with the Wilson-type quark action, we obtain the chiral condensate and its disconnected susceptibility showing a clear signal of pseudocritical temperature at T~190 MeV related to the chiral restoration crossover.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا