No Arabic abstract
In conventional solid-state electron systems with localized states the ac absorption is linear since the inelastic widths of the energy levels exceeds the drive amplitude. The situation is different in the systems of cold atoms in which phonons are absent. Then even a weak drive leads to saturation of the ac absorption within resonant pairs, so that the population of levels oscillates with the Rabi frequency. We demonstrate that, in the presence of weak dipole-dipole interactions, the response of the system acquires a long-time component which oscillates with frequency much smaller than the Rabi frequency. The underlying mechanism of this long-time behavior is that the fields created in the course of the Rabi oscillations serve as resonant drive for the second-generation Rabi oscillations in pairs with level spacings close to the Rabi frequency. The frequency of the second-generation oscillations is of the order of interaction strength. As these oscillations develop, they can initiate the next-generation Rabi oscillations, and so on. Formation of the second-generation oscillations is facilitated by the non-diagonal component of the dipole-dipole interaction tensor.
We study spatial structures of anomalously localized states (ALS) in tail regions at the critical point of the Anderson transition in the two-dimensional symplectic class. In order to examine tail structures of ALS, we apply the multifractal analysis only for the tail region of ALS and compare with the whole structure. It is found that the amplitude distribution in the tail region of ALS is multifractal and values of exponents characterizing multifractality are the same with those for typical multifractal wavefunctions in this universality class.
I derive a mode-coupling theory for the velocity autocorrelation function, psi(t), in a fluid of randomly driven inelastic hard spheres far from equilibrium. With this, I confirm a conjecture from simulations that the velocity autocorrelation function decays algebraically, psi(t) ~ t^{-3/2}, if momentum is conserved. I show that the slow decay is due to the coupling to transverse currents.
We present an analytical method, based on a real space decimation scheme, to extract the exact eigenvalues of a macroscopically large set of pinned localized excitations in a Cayley tree fractal network. Within a tight binding scheme we exploit the above method to scrutinize the effect of a deterministic deformation of the network, first through a hierarchical distribution in the values of the nearest neighbor hopping integrals, and then through a radial Aubry Andre Harper quasiperiodic modulation. With increasing generation index, the inflating loop less tree structure hosts pinned eigenstates on the peripheral sites that spread from the outermost rings into the bulk of the sample, resembling the spread of a forest fire, lighting up a predictable set of sites and leaving the rest unignited. The penetration depth of the envelope of amplitudes can be precisely engineered. The quasiperiodic modulation yields hitherto unreported quantum butterflies, which have further been investigated by calculating the inverse participation ratio for the eigenstates, and a multifractal analysis. The applicability of the scheme to photonic fractal waveguide networks is discussed at the end.
We present results of conductance-noise experiments on disordered films of crystalline indium oxide with lateral dimensions 2microns to 1mm. The power-spectrum of the noise has the usual 1/f form, and its magnitude increases with inverse sample-volume down to sample size of 2microns, a behavior consistent with un-correlated fluctuators. A colored second spectrum is only occasionally encountered (in samples smaller than 40microns), and the lack of systematic dependence of non-Gaussianity on sample parameters persisted down to the smallest samples studied (2microns). Moreover, it turns out that the degree of non-Gaussianity exhibits a non-trivial dependence on the bias V used in the measurements; it initially increases with V then, when the bias is deeper into the non-linear transport regime it decreases with V. We describe a model that reproduces the main observed features and argue that such a behavior arises from a non-linear effect inherent to electronic transport in a hopping system and should be observed whether or not the system is glassy.
We present a numerical study of the spin Hall effect in a two-dimensional hole gas (2DHG) system in the presence of disorder. We find that the spin Hall conductance (SHC), extrapolated to the thermodynamic limit, remains finite in a wide range of disorder strengths for a closed system on torus. But there is no intrinsic spin Hall accumulation as induced by an external electric field once the disorder is turned on. The latter is examined by performing a Laughlins Gedanken gauge experiment numerically with the adiabatical insertion of a flux quantum in a belt-shaped sample, in which the absence of level crossing is found under the disorder effect. Without disorder, on the other hand, energy levels do cross each other, which results in an oscillating spin-density-modulation at the sample boundary after the insertion of one flux quantum in the belt-shaped system. But the corresponding net spin transfer is only about one order of magnitude smaller than what is expected from the bulk SHC. These apparently contradictory results can be attributed to the violation of the spin conservation law in such a system. We also briefly address the dissipative Fermi surface contribution to spin polarization, which may be relevant to experimental measurements.