No Arabic abstract
Deep neural networks (DNN) have been shown to be useful in a wide range of applications. However, they are also known to be vulnerable to adversarial samples. By transforming a normal sample with some carefully crafted human imperceptible perturbations, even highly accurate DNN make wrong decisions. Multiple defense mechanisms have been proposed which aim to hinder the generation of such adversarial samples. However, a recent work show that most of them are ineffective. In this work, we propose an alternative approach to detect adversarial samples at runtime. Our main observation is that adversarial samples are much more sensitive than normal samples if we impose random mutations on the DNN. We thus first propose a measure of `sensitivity and show empirically that normal samples and adversarial samples have distinguishable sensitivity. We then integrate statistical hypothesis testing and model mutation testing to check whether an input sample is likely to be normal or adversarial at runtime by measuring its sensitivity. We evaluated our approach on the MNIST and CIFAR10 datasets. The results show that our approach detects adversarial samples generated by state-of-the-art attacking methods efficiently and accurately.
Recently, it has been shown that deep neural networks (DNN) are subject to attacks through adversarial samples. Adversarial samples are often crafted through adversarial perturbation, i.e., manipulating the original sample with minor modifications so that the DNN model labels the sample incorrectly. Given that it is almost impossible to train perfect DNN, adversarial samples are shown to be easy to generate. As DNN are increasingly used in safety-critical systems like autonomous cars, it is crucial to develop techniques for defending such attacks. Existing defense mechanisms which aim to make adversarial perturbation challenging have been shown to be ineffective. In this work, we propose an alternative approach. We first observe that adversarial samples are much more sensitive to perturbations than normal samples. That is, if we impose random perturbations on a normal and an adversarial sample respectively, there is a significant difference between the ratio of label change due to the perturbations. Observing this, we design a statistical adversary detection algorithm called nMutant (inspired by mutation testing from software engineering community). Our experiments show that nMutant effectively detects most of the adversarial samples generated by recently proposed attacking methods. Furthermore, we provide an error bound with certain statistical significance along with the detection.
Deep Neural Networks (DNN) are known to be vulnerable to adversarial samples, the detection of which is crucial for the wide application of these DNN models. Recently, a number of deep testing methods in software engineering were proposed to find the vulnerability of DNN systems, and one of them, i.e., Model Mutation Testing (MMT), was used to successfully detect various adversarial samples generated by different kinds of adversarial attacks. However, the mutated models in MMT are always huge in number (e.g., over 100 models) and lack diversity (e.g., can be easily circumvented by high-confidence adversarial samples), which makes it less efficient in real applications and less effective in detecting high-confidence adversarial samples. In this study, we propose Graph-Guided Testing (GGT) for adversarial sample detection to overcome these aforementioned challenges. GGT generates pruned models with the guide of graph characteristics, each of them has only about 5% parameters of the mutated model in MMT, and graph guided models have higher diversity. The experiments on CIFAR10 and SVHN validate that GGT performs much better than MMT with respect to both effectiveness and efficiency.
Application of neural networks to a vast variety of practical applications is transforming the way AI is applied in practice. Pre-trained neural network models available through APIs or capability to custom train pre-built neural network architectures with customer data has made the consumption of AI by developers much simpler and resulted in broad adoption of these complex AI models. While prebuilt network models exist for certain scenarios, to try and meet the constraints that are unique to each application, AI teams need to think about developing custom neural network architectures that can meet the tradeoff between accuracy and memory footprint to achieve the tight constraints of their unique use-cases. However, only a small proportion of data science teams have the skills and experience needed to create a neural network from scratch, and the demand far exceeds the supply. In this paper, we present NeuNetS : An automated Neural Network Synthesis engine for custom neural network design that is available as part of IBMs AI OpenScales product. NeuNetS is available for both Text and Image domains and can build neural networks for specific tasks in a fraction of the time it takes today with human effort, and with accuracy similar to that of human-designed AI models.
Deep Neural Networks (DNN) have improved the quality of several non-safety related products in the past years. However, before DNNs should be deployed to safety-critical applications, their robustness needs to be systematically analyzed. A common challenge for DNNs occurs when input is dissimilar to the training set, which might lead to high confidence predictions despite proper knowledge of the input. Several previous studies have proposed to complement DNNs with a supervisor that detects when inputs are outside the scope of the network. Most of these supervisors, however, are developed and tested for a selected scenario using a specific performance metric. In this work, we emphasize the need to assess and compare the performance of supervisors in a structured way. We present a framework constituted by four datasets organized in six test cases combined with seven evaluation metrics. The test cases provide varying complexity and include data from publicly available sources as well as a novel dataset consisting of images from simulated driving scenarios. The latter we plan to make publicly available. Our framework can be used to support DNN supervisor evaluation, which in turn could be used to motive development, validation, and deployment of DNNs in safety-critical applications.
Although deep learning has demonstrated astonishing performance in many applications, there are still concerns about its dependability. One desirable property of deep learning applications with societal impact is fairness (i.e., non-discrimination). Unfortunately, discrimination might be intrinsically embedded into the models due to the discrimination in the training data. As a countermeasure, fairness testing systemically identifies discriminatory samples, which can be used to retrain the model and improve the models fairness. Existing fairness testing approaches however have two major limitations. Firstly, they only work well on traditional machine learning models and have poor performance (e.g., effectiveness and efficiency) on deep learning models. Secondly, they only work on simple structured (e.g., tabular) data and are not applicable for domains such as text. In this work, we bridge the gap by proposing a scalable and effective approach for systematically searching for discriminatory samples while extending existing fairness testing approaches to address a more challenging domain, i.e., text classification. Compared with state-of-the-art methods, our approach only employs lightweight procedures like gradient computation and clustering, which is significantly more scalable and effective. Experimental results show that on average, our approach explores the search space much more effectively (9.62 and 2.38 times more than the state-of-the-art methods respectively on tabular and text datasets) and generates much more discriminatory samples (24.95 and 2.68 times) within a same reasonable time. Moreover, the retrained models reduce discrimination by 57.2% and 60.2% respectively on average.