Do you want to publish a course? Click here

LISA Pathfinder Platform Stability and Drag-free Performance

56   0   0.0 ( 0 )
 Added by Eric Plagnol
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The science operations of the LISA Pathfinder mission has demonstrated the feasibility of sub-femto-g free-fall of macroscopic test masses necessary to build a LISA-like gravitational wave observatory in space. While the main focus of interest, i.e. the optical axis or the $x$-axis, has been extensively studied, it is also of interest to evaluate the stability of the spacecraft with respect to all the other degrees of freedom. The current paper is dedicated to such a study, with a focus set on an exhaustive and quantitative evaluation of the imperfections and dynamical effects that impact the stability with respect to its local geodesic. A model of the complete closed-loop system provides a comprehensive understanding of each part of the in-loop coordinates spectra. As will be presented, this model gives very good agreements with LISA Pathfinder flight data. It allows one to identify the physical noise source at the origin and the physical phenomena underlying the couplings. From this, the performances of the stability of the spacecraft, with respect to its geodesic, are extracted as a function of frequency. Close to $1 mHz$, the stability of the spacecraft on the $X_{SC}$, $Y_{SC}$ and $Z_{SC}$ degrees of freedom is shown to be of the order of $5.0 10^{-15} m s^{-2}/sqrt{Hz}$ for X and $4.0 10^{-14} m s^{-2}/sqrt{Hz}$ for Y and Z. For the angular degrees of freedom, the values are of the order $3 10^{-12} rad s^{-2}/sqrt{Hz}$ for $Theta_{SC}$ and $3 10^{-13} rad s^{-2}/sqrt{Hz}$ for $H_{SC}$ and $Phi_{SC}$.



rate research

Read More

Since the 2017 Nobel Prize in Physics was awarded for the observation of gravitational waves, it is fair to say that the epoch of gravitational wave astronomy (GWs) has begun. However, a number of interesting sources of GWs can only be observed from space. To demonstrate the feasibility of the Laser Interferometer Space Antenna (LISA), a future gravitational wave observatory in space, the LISA Pathfinder satellite was launched on December, 3rd 2015. Measurements of the spurious forces accelerating an otherwise free-falling test mass, and detailed investigations of the individual subsystems needed to achieve the free-fall, have been conducted throughout the mission. This overview article starts with the purpose and aim of the mission, explains satellite hardware and mission operations and ends with a summary of selected important results and an outlook towards LISA. From the LISA Pathfinder experience, we can conclude that the proposed LISA mission is feasible.
81 - M. Armano , H. Audley , J. Baird 2019
LISA Pathfinder (LPF) was a technology pioneering mission designed to test key technologies required for gravitational wave detection in space. In the low frequency regime (milli-Hertz and below), where space-based gravitational wave observatories will operate, temperature fluctuations play a crucial role since they can couple into the interferometric measurement and the test masses free-fall accuracy in many ways. A dedicated temperature measurement subsystem, with noise levels in 10$,mu$K$,$Hz$^{-1/2}$ down to $1,$mHz was part of the diagnostics unit on board LPF. In this paper we report on the temperature measurements throughout mission operations, characterize the thermal environment, estimate transfer functions between different locations and report temperature stability (and its time evolution) at frequencies as low as 10$,mu$Hz, where typically values around $1,$K$,$Hz$^{-1/2}$ were measured.
108 - M. Armano , H. Audley , G. Auger 2014
The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet its primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this `suspension noise. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.
312 - M. Armano , H. Audley , G. Auger 2017
We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm/s^2/sqrt(Hz) across the 0.1-100 mHz frequency band that is crucial to an observatory such as LISA. Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge build up due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.
188 - M. Armano , H. Audley , J. Baird 2018
LISA Pathfinder (LPF) was a European Space Agency mission with the aim to test key technologies for future space-borne gravitational-wave observatories like LISA. The main scientific goal of LPF was to demonstrate measurements of differential acceleration between free-falling test masses at the sub-femto-g level, and to understand the residual acceleration in terms of a physical model of stray forces, and displacement readout noise. A key step toward reaching the LPF goals was the correct calibration of the dynamics of LPF, which was a three-body system composed by two test-masses enclosed in a single spacecraft, and subject to control laws for system stability. In this work, we report on the calibration procedures adopted to calculate the residual differential stray force per unit mass acting on the two test-masses in their nominal positions. The physical parameters of the adopted dynamical model are presented, together with their role on LPF performance. The analysis and results of these experiments show that the dynamics of the system was accurately modeled and the dynamical parameters were stationary throughout the mission. Finally, the impact and importance of calibrating system dynamics for future space-based gravitational wave observatories is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا