We elaborate on the spin projection operators in three dimensions and use them to derive a new representation for the linearised higher-spin Cotton tensors.
We formulate off-shell N=1 superconformal higher spin multiplets in four spacetime dimensions and briefly discuss their coupling to conformal supergravity. As an example, we explicitly work out the coupling of the superconformal gravitino multiplet to conformal supergravity. The corresponding action is super-Weyl invariant for arbitrary supergravity backgrounds. However, it is gauge invariant only if the supersymmetric Bach tensor vanishes. This is similar to linearised conformal supergravity in curved background.
In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using $F=0$ to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to lineariz
Curvature tensors of higher-spin gauge theories have been known for some time. In the past, they were postulated using a generalization of the symmetry properties of the Riemann tensor (curl on each index of a totally symmetric rank-$n$ field for each spin-$n$). For this reason they are sometimes referred to as the generalized Riemann tensors. In this article, a method for deriving these curvature tensors from first principles is presented; the derivation is completed without any a priori knowledge of the existence of the Riemann tensors or the curvature tensors of higher-spin gauge theories. To perform this derivation, a recently developed procedure for deriving exactly gauge invariant Lagrangian densities from quadratic combinations of $N$ order of derivatives and $M$ rank of tensor potential is applied to the $N = M = n$ case under the spin-$n$ gauge transformations. This procedure uniquely yields the Lagrangian for classical electrodynamics in the $N = M = 1$ case and the Lagrangian for higher derivative gravity (`Riemann and `Ricci squared terms) in the $N = M = 2$ case. It is proven here by direct calculation for the $N = M = 3$ case that the unique solution to this procedure is the spin-3 curvature tensor and its contractions. The spin-4 curvature tensor is also uniquely derived for the $N = M = 4$ case. In other words, it is proven here that, for the most general linear combination of scalars built from $N$ derivatives and $M$ rank of tensor potential, up to $N=M=4$, there exists a unique solution to the resulting system of linear equations as the contracted spin-$n$ curvature tensors. Conjectures regarding the solutions to the higher spin-$n$ $N = M = n$ are discussed.
We study conformal higher spin (CHS) fields on constant curvature backgrounds. By employing parent formulation technique in combination with tractor description of GJMS operators we find a manifestly factorized form of the CHS wave operators for symmetric fields of arbitrary integer spin $s$ and gauge invariance of arbitrary order $tleq s$. In the case of the usual Fradkin-Tseytlin fields $t=1$ this gives a systematic derivation of the factorization formulas known in the literature while for $t>1$ the explicit formulas were not known. We also relate the gauge invariance of the CHS fields to the partially-fixed gauge invariance of the factors and show that the factors can be identified with (partially gauge-fixed) wave operators for (partially)-massless or special massive fields. As a byproduct, we establish a detailed relationship with the tractor approach and, in particular, derive the tractor form of the CHS equations and gauge symmetries.
We give an explicit superspace construction of higher spin conserved supercurrents built out of $4D,mathcal{N}=1$ massless supermultiplets of arbitrary spin. These supercurrents are gauge invariant and generate a large class of cubic interactions between a massless supermultiplet with superspin $Y_1=s_1+1/2$ and two massless supermultiplets of arbitrary superspin $Y_2$. These interactions are possible only for $s_1geq 2Y_2$. At the equality, the supercurrent acquires its simplest form and defines the supersymmetric, higher spin extension of the linearized Bel-Robinson tensor.
Evgeny I. Buchbinder
,Sergei M. Kuzenko
,James La Fontaine
.
(2018)
.
"Spin projection operators and higher-spin Cotton tensors in three dimensions"
.
Sergei Kuzenko
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا