Fourier acceleration, the HMC algorithm and renormalizability


Abstract in English

The analysis developed by Luscher and Schaefer of the Hybrid Monte Carlo (HMC) algorithm is extended to include Fourier acceleration. We show for the $phi^4$ theory that Fourier acceleration substantially changes the structure of the theory for both the Langevin and HMC algorithms. When expanded in perturbation theory, each five-dimensional auto-correlation function of the fields $phi(x_i, t_i)$, $1le i le N $, corresponding to a specific 4-dimensional Feynman graph separates into two factors: one depending on the Monte-Carlo evolution times $t_i$ and the second depending on the space-time positions $x_i$. This separation implies that only auto-correlation times at the lattice scale appear, eliminating critical slowing down in perturbation theory.

Download